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Chapter 1. Machine
Learning Systems
in Production

A NOTE FOR EARLY RELEASE
READERS

With Early Release ebooks, you get
books in their earliest form—the author’s
raw and unedited content as they write—
so you can take advantage of these
technologies long before the official
release of these titles.

This will be the 1st chapter of the final
book. Please note that the GitHub repo
will be made active later on.

If you have comments about how we
might improve the content and/or



examples in this book, or if you notice
missing material within this chapter,
please reach out to the author at
chip@huyenchip.com.

In November 2016, Google announced that it
had incorporated its multilingual neural
machine translation system into Google
Translate, marking one of the first success
stories of deep neural artificial neural
networks in production at scale’. According
to Google, with this update, Google
Translate’s quality of translation improved
more in a single leap than they had seen in
the previous ten years combined.

Since then, more and more companies have
turned towards machine learning (ML) for
solutions to their most challenging problems.
In just five years, ML has found its way into
almost every aspect of our lives, from how
we access information, how we
communicate, how we work, to how we find
love. The spread of ML has been so rapid that



it’s already hard to imagine life without it.
Yet, there are still many more use cases for
ML waiting to be explored: in healthcare, in
transportation, in farming, even in helping us

understand the universe?2.

Many people, when they hear “machine
learning”, think of ML algorithms such as
logistic regression or different types of neural
networks. However, the algorithm is only a
small part of an ML system in production.
The system also includes the interface where
users and developers interact with your
system, the data stack to manage your data,
the infrastructure to execute the required
workloads, and the hardware backend your
ML algorithm runs on. Figure 1.1 shows you
the different components of an ML system.
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Figure 1-1. Different components of an ML system. “ML
algorithms” is usually what people think of when they say
machine learning, but it’s only a small part of the entire
system.

There are many excellent books that can give
readers a deep understanding of various ML
algorithms. This book doesn’t aim to explain
any specific algorithms in detail but to help
readers understand the entire ML system as a
whole. New algorithms are constantly being
developed. This book hopes to provide you
with a process to develop a solution that best
works for your problem, regardless of which
algorithm you might end up using. Chapter
[TODO] includes a section that helps you
evaluate which algorithm is best for your
problem.

Because of the scale of many ML systems—
they consume a massive amount of data,
require heavy computational power, and have
the potential to affect the lives of so many
people—deploying them in production has
many engineering and societal challenges.
However, because of the speed at which these



applications are being deployed, these
challenges are not always properly
understood, let alone addressed. In the best
case, the failure to address these challenges
can lead to a few unhappy users. In the worst
case, it can ruin people’s lives and bankrupt
companies.

This chapter aims to give you a high-level
view of the challenges and requirements for
deploying ML systems in production.
However, before talking about how to
develop ML systems, it’s important to take a
step back and ask a fundamental question:
when and when not to use machine learning.
We’ll cover some of the popular use cases of
ML to illustrate this point.

We will then move onto the challenges of
deploying ML systems, and it’ll do so by
comparing ML in production to ML in
research as well as to traditional software. It
continues with an overview of ML systems
design as well as the iterative process for
designing an ML system that is deployable,



reliable, scalable, and adaptable.

If you’ve been in the trenches, you might
already be familiar with what’s written in this
chapter. However, if you have only had
experience with ML in an academic setting,
this chapter will give an honest view of what
it takes to deploy ML in the real world, and,
hopefully, set your first application up for
success.

When and When not to Use
Machine Learning

As its adoption in the industry quickly grows,
ML has proven to be a powerful tool for a
wide range of problems. Despite an
incredible amount of excitement and hype
generated by people both inside and outside
the field, machine learning (ML) is not a
magic tool that can solve all problems. Even
for problems that ML can solve, ML
solutions might not be the optimal solutions.



Before starting an ML project, you might
want to ask whether ML is necessary® or
cost-effective.

When To Use Machine Learning

We expect that most readers are familiar with
the basics of ML. However, to understand
what ML can do, let’s take a step back and
understand what ML is:

Machine learning is an approach to (1) learn
(2) complex (3) patterns from (4) existing
data and use these patterns to make (5)
predictions on (6) unseen data.

We’ll look at each of the underlined
keyphrases in the definition to understand its
implications to the problems ML can solve.

Learn: the system has the capacity to learn

A relational database isn’t an ML system
because it doesn’t have the capacity to
learn. You can explicitly state the
relationship between two columns in a



relational database, but it’s unlikely to
have the capacity to figure out the
relationship between these two columns
by itself.

For an ML system to learn, there must be
something for it to learn from. In most
cases, ML systems learn from data. In
supervised learning, based on examples of
what inputs and outputs should look like,
ML systems learn how to generate
outputs for arbitrary inputs. For example,
if you want to build an ML system to
learn to predict the rental price for Airbnb
listings, you need to provide a dataset
where each input is a listing with all its
characteristics (square footage, number of
rooms, neighborhood, amenities, rating of
that listing, etc.) and the associated output
is the rental price of that listing. Once
learned, this ML system can predict the
price of a new listing given its
characteristics.



Complex: the patterns are complex

Consider a website like Airbnb with a lot
of house listings, each listing comes with
a zip code. If you want to sort listings into
the states they are located in, you
wouldn’t need an ML system. Since the
pattern is simple—each zip code
corresponds to a known state—you can
just use a lookup table.

The relationship between a rental price
and all its characteristics follows a much
more complex pattern which would be
very challenging to explicitly state by
hand. ML is a good solution for this.
Instead of telling your system how to
calculate the price from a list of
characteristics, you can provide prices
and characteristics, and let your ML,
system figure out the pattern.

ML has been very successful with tasks
with complex patterns such as object
detection and speech recognition.



Algorithmic complexity is different from
complexity in human perception. Many
tasks that are hard for humans to do can
be easy to express in algorithms, for
example, raising a number of the power
of 10. Vice versa, many tasks that are
easy for humans can be hard to express in
algorithms, e.g. deciding whether there’s
a cat in a picture.

Patterns: there are patterns to learn

ML solutions are only useful when there
are patterns to learn. Sane people don’t
invest money into building an ML system
to predict the next outcome of a fair die
because there’s no pattern in how these
outcomes are generated®.

However, there are patterns in how stocks
are priced, and therefore companies have
invested billions of dollars in building
ML systems to learn those patterns.

Whether a pattern exists might not be
obvious, or if patterns exist, your dataset



might not be sufficient to capture them.
For example, there might be a pattern in
how Elon Musk’s tweets affect Bitcoin
prices. However, you wouldn’t know
until you’ve rigorously trained and
evaluated your ML models on his tweets.
Even if all your models fail to make
reasonable predictions of Bitcoin prices, it
doesn’t mean there’s no pattern.

Existing data: data is available, or it’s
possible to collect data

Because ML learns from data, there must
be data for it to learn from. It’s amusing
to think about building a model to predict
how much tax a person should pay a year,
but it’s not possible unless you have
access to tax and income data of a large
population.

In the zero-shot learning (sometimes
known as zero-data learning) context, it’s
possible for an ML system to make
correct predictions for a task without


https://en.wikipedia.org/wiki/Zero-shot_learning

having been trained on data for that task.
However, this ML system was previously
trained on data for a related task. So even
though the system doesn’t require data for
the task at hand to learn from, it still
requires data to learn.

It’s also possible to launch a ML system
without data. For example, in the context
of online learning, ML models can be
deployed without having been trained on
any data, but they will learn from data in
production®.

Without data and without online learning,
many companies follow a ‘fake-it-til-you
make it’ approach: launching a product
that serves predictions made by humans,
instead of ML algorithms, with the hope
of using the generated data to train ML
algorithms.

Predictions: it’s a predictive problem

ML algorithms make predictions, so they
can only solve problems that require



predictions. ML can be especially
appealing when you can benefit from a
large quantity of cheap but approximate
predictions. In English, “predict” means
“estimate a value in the future.” For
example, what would the weather be like
tomorrow? What would win the Super
Bowl this year? What movie would a user
want to watch next?

As predictive machines (e.g. ML models)
are becoming more effective, more and
more problems are being reframed as
predictive problems. Whatever question
you might have, you can always frame it
as: “What would the answer to this
question be?”, regardless of whether this
question is about something in the future,
the present, or even the past.

Compute-intensive problems are one class
of problems that have been very
successfully reframed as predictive.
Instead of computing the exact outcome
of a process, which might be even more



computationally costly and time-
consuming than ML, you can frame the
problem as: “What would the outcome of
this process look like?” and approximate
it using an ML algorithm. The output will
be an approximation of the exact output,
but often, it’s good enough. You can see a
lot of it in graphic renderings, such as
image denoising®, screen-space shading’.

Unseen data: Unseen data shares patterns
with the training data

The patterns your model learns from
existing data are only useful if unseen
data also share these patterns. A model to
predict whether an app will get
downloaded on Christmas 2020 won’t
perform very well if it’s trained on data
from 2008 when the most popular app on
the App Store was Koi Pond. What’s Koi
Pond? Exactly.

In technical terms, it means your unseen
data and training data should come from



similar distributions. You might ask: “If
the data is unseen, how do we know what
distribution it comes from?” We don’t,
but we can make assumptions—such as
we can assume that users’ behaviors
tomorrow won'’t be too different from
users’ behaviors today—and hope that
our assumptions hold. If they don’t, we’ll
find out soon enough.

Due to the way most ML algorithms
today learn, ML solutions will especially
shine if your problem has these additional
following characteristics.

It’s repetitive

Humans are great at few-shot learning:
you can show kids a few pictures of cats
and most of them will recognize a cat the
next time they see one. Despite exciting
progress in few-shots learning research,
most ML algorithms still require many
examples to learn a pattern. When a task
is repetitive, each pattern is repeated



multiple times, which makes it easier for
machines to learn it.

It’s at scale

ML solutions often require non-trivial
upfront investment on data, compute,
infrastructure, and talent, so it’d make
sense if we can use these solutions a lot.

“At scale” means different things for
different tasks, but it might mean making
a lot of predictions. Examples include
sorting through millions of mails a year or
predicting which departments thousands
of support tickets should be sent to a day.

A problem might appear to be a singular
prediction but it’s actually a series of
predictions. For example, a model that
predicts who will win a US presidential
election seems like it only makes one
prediction every four years, but it might
actually be making a prediction every
hour or even less because that prediction
has to be updated to new information over



time.

Having a problem at scale also means that
there’s a lot of data for you to collect,
which is useful for training ML models.

The patterns are constantly changing

Cultures change. Tastes change.
Technologies change. What’s trendy
today might be old news tomorrow.
Consider the task of email spam
classification. Today, an indication of a
spam email is a Nigerian prince but
tomorrow it might be a distraught
Vietnamese writer.

If your problem involves one or more
constantly changing patterns, solutions
that don’t allow you to learn from
changing data might get you stuck in the
past.

When not to Use Machine
Learning



The list of use cases can go on and on, and
it’ll grow even longer as ML adoption
matures in the industry. Even though ML can
solve a subset of problems very well, it can’t
solve and/or shouldn’t be used for a lot of
problems. Most today’s ML algorithms
shouldn’t be used under any of the following
conditions.

1. It’s unethical.

2. Simpler solutions do the trick. In
chapter [TODO], we’ll cover how to
start with simple solutions first
before trying out ML solutions.

3. One single prediction error can cause
devastating consequences.

4. It’s not cost-effective.

However, even if ML can’t solve your
problem, it might be possible to break your
problem into smaller components and ML
can solve some of them. For example, if you
can’t build a chatbot to answer all your



customers’ queries, it might be possible to
build an ML model to predict whether a
query matches one of the frequently asked
questions. If yes, automatically direct the
customer to the answer. If not, direct them to
customer service.

I’d also want to caution against dismissing a
new technology because it’s not as cost-
effective as older technologies at the moment.
Most technological advances are incremental.
A type of technology might not be efficient
now, but it might be in the future. If you wait
for the technology to prove its worth to the
rest of the industry before jumping in, you
might be years or decades behind your
competitors.

Machine Learning Use Cases

ML has found increasing usage in both
enterprise and consumer applications. Since
the mid-2010s, there has been an explosion of
applications that leverage ML to deliver
superior or previously impossible services to



the consumers.

With the explosion of information and
services, it’d have been very challenging for
us to find what we want without the help of
ML, manifested in either a search engine or
a recommendation system. When you visit a
website like Amazon or Netflix, you’re
recommended items that are predicted to best
match your taste. If you don’t like any of
your recommendations, you might want to
search for specific items, and your search
results are likely to be powered by ML.

If you have a smartphone, ML is likely
already assisting you in many of your daily
activities. Typing on your phone is made
easier with predictive typing, an ML system
that gives you suggestions on what you might
want to say next. An ML system might run in
your photo editing app to suggest how best
to enhance your photos. You might
authenticate your phone using your
fingerprint or your face, which requires an
ML system to predict whether a fingerprint or



a face matches yours.

The ML use case that drew me into the field
was machine translation, automatically
translating from one language to another. It
has the potential to allow people from
different cultures to communicate with each
other, erasing the language barrier. My
parents don’t speak English, but thanks to
Google Translate, now they can read my
writing and talk to my friends who don’t
speak Vietnamese.

ML is increasingly present in our homes with
smart personal assistants such as Alexa and
Google Assistant. Smart security cameras
can let you know when your pets leave home
or if you have an uninvited guest. A friend of
mine was worried about his aging mother
living by herself -- if she falls, no one is there
to help her get up -- so he relied on an at-
home health monitoring system that
predicts whether someone has fallen in the
house.



Even though the market for consumer ML
applications is booming, the majority of ML
use cases are still in the enterprise world.
Enterprise ML applications tend to have
vastly different requirements and
considerations from consumer applications.
There are many exceptions, but for most
cases, enterprise applications might have
stricter accuracy requirements but be more
forgiving with latency requirements. For
example, improving a speech recognition
system’s accuracy from 95% to 95.5% might
not be noticeable to most consumers, but
improving a resource allocation system’s
efficiency by just 0.1% can help a corporation
like Google or General Motors save millions
of dollars. At the same time, latency of a
second might get a consumer distracted and
open something else, but enterprise users
might be more tolerant of that. For people
interested in building companies out of ML
applications, consumer apps might be easier
to distribute but much harder to make money
out of. However, most enterprise use cases



aren’t obvious unless you’ve encountered
them yourself.

According to Algorithmia’s 2020 state of
enterprise machine learning survey, ML
applications in enterprises are diverse,
serving both internal use cases (reducing
costs, generating customer insights and
intelligence, internal processing automation)
and external use cases (improving customer
experience, retaining customers, interacting
with customers).®

IMAGE TO COME

Figure 1-2. 2020 state of enterprise machine learning by
Algorithmia.

Fraud detection is among the oldest
applications of ML in the industry. If your



product or service involves transactions of
any value, it’ll be susceptible to fraud. By
leveraging ML solutions for anomaly
detection, you can have systems that learn
from historical fraud transactions and predict
whether a future transaction is fraudulent.

Deciding how much to charge for your
product or service is probably one of the
hardest business decisions, why not let ML
do it for you? Price optimization is the
process of estimating a price at a certain time
period to maximize a defined objective
function, such as the company’s margin,
revenue, or growth rate. ML-based pricing
optimization is most suitable for cases with a
large number of transactions where demand
fluctuates and consumers are willing to pay a
dynamic price e.g. Internet ads, flight tickets,
accommodation bookings, ride-sharing,
events.

To run a business, it’s important to be able to
forecast customer demand so that you can
prepare a budget, stock inventory, allocate



resources, and update pricing strategy. For
example, if you run a grocery store, you want
to stock enough so that customers find what
they’re looking for, but you don’t want to
overstock, because if you do, your groceries
might go bad and you lose money.

Acquiring a new user is expensive. As of
2019, the average cost for an app to acquire a
user who’ll make an in-app purchase is
$86.61°. The acquisition cost for Lyft is
estimated at $158/rider1®. This cost is so
much higher for enterprise customers.
Customer acquisition cost is hailed by
investors as a startup killer'*. Reducing
customer acquisition costs by a small
amount can result in a large increase in profit.
This can be done through better identifying
potential customers, showing better-targeted
ads, giving discounts at the right time, etc.—
all of which are suitable tasks for ML.

After you’ve spent so much money acquiring
a customer, it’d be a shame if they leave.
Churn prediction is predicting when a



specific customer is about to stop using your
products or services so that you can take
appropriate actions to win them back. Churn
prediction can be used not only for customers
but also for employees.

To prevent customers from leaving, it’s
important to keep them happy by addressing
their concerns as soon as they arise.
Automated support ticket classification can
help with that. Previously, when a customer
opens a support ticket or sends an email, it
needs to first be processed then passed
around to different departments until it
arrives at the inbox of someone who can
address it. An ML system can analyze the
ticket content and predict where it should go,
which can shorten the response time and
improve customer satisfaction. It can also be
used to classify internal IT tickets.

Another popular use case of ML in enterprise
is brand monitoring. The brand is a valuable
asset of a business'?. It’s important to
monitor how the public and how your



customers perceive your brand. You might
want to know when/where/how it’s
mentioned, both explicitly (e.g. when
someone mentions “Google”) or implicitly
(e.g. when someone says “the search giant”)
as well as the sentiment associated with it. If
there’s suddenly a surge of negative
sentiment in your brand mentions, you might
want to do something about it as soon as
possible. Sentiment analysis is a typical ML
task.

A set of ML use cases that has generated
much excitement recently is in health care.
There are ML systems that can detect skin
cancer and diagnose diabetes. Healthcare
prediction systems are technically geared
towards consumers, but because of their strict
requirements with accuracy and privacy, they
might be provided through a healthcare
provider such as a hospital or used to assist
doctors in providing diagnosis.



Understanding Machine
Learning Systems

Before learning how to design machine
learning systems, we’ll go over how ML
systems are different from both ML in
research (or as often taught in school) and
traditional software, which motivates the
need for this book.

Machine learning in research vs.
in production

As ML usage in the industry is still fairly
new, most people with ML expertise have
gained it through academia: taking courses,
doing research, reading academic papers. If
that describes your background, it might be a
steep learning curve for you to understand the
challenges of deploying ML systems in the
wild and navigate an overwhelming set of
solutions to these challenges. ML in
production is very different from ML in
research. Table 1-1 shows five of the major



differences.

Table 1-1. Key differences between ML in
research and ML in production.

Research Production

Objectives Model performance Different
stakeholders have
different objective

Computational Fast training, high  Fast inference, lov
priority throughput latency
Data Static® Constantly shiftin
Fairness Good to have Important

(sadly)
Interpretability Good to have Important

a A subfield of research focuses on continual learning:
developing models to work with changing data
distributions. We’ll cover continual learning in Chapte
7.

Stakeholders and their objectives

Research and leaderboard projects often have
one single objective. The most common
objective is model performance—develop a



model that achieves the state-of-the-art
(SOTA) results on benchmark datasets. To
edge out a small improvement in
performance, researchers often resort to
techniques that make models too complex to
be useful.

There are many stakeholders involved in
bringing an ML system into production. Each
stakeholder has their own objective. Consider
a project that recommends restaurants to
users. The project involves ML engineers,
salespeople, product managers, infrastructure
engineers, and a manager.

e The ML engineers want a model
that recommends restaurants that
users will most likely order from,
and they believe they can do so by
using a more complex model with
more data.

e The sales team wants a model that
recommends restaurants that pay the
highest advertising fee to be shown



in-app, since ads bring in more
revenue than just service fees.

e The product team notices that every
drop in latency leads to drop in
orders through the service, so they
want a model that can do inference
faster than the model that the ML
engineers are working on.

e As the traffic grows, the
infrastructure team has been woken
up in the middle of the night because
of problems with scaling their
existing system, so they want to hold
off the production line so they could
update the infrastructure.

e The manager wants to maximize the
margin, and one way to achieve it is
to let go of the ML team™3.

These objectives require different models, yet
the stakeholders will have to collaborate to
somehow create a model that will satisfy all



of them.

Production having different objectives from
research is one of the reasons why successful
research projects might not always be used in
production. Ensembling is a technique
popular among the winners of many ML
competitions, including the famed $1M
Netflix Prize. It combines “multiple learning
algorithms to obtain better predictive
performance than could be obtained from any
of the constituent learning algorithms
alone.'*” While it can give you a small
improvement, ensembled systems risk being
too complex to be useful, e.g. more error-
prone to deploy, slower to serve, or harder to
interpret.

For many tasks, a small improvement in
performance can result in a huge boost in
revenue or cost save. For example, a 0.2%
improvement in the click-through-rate for a
product recommendation system can result in
millions of dollars increase in revenue for an
ecommerce site. However, for many tasks, a



small improvement might not be noticeable
for users. From a user’s point of view, a
speech recognition app with a 95% accuracy
is not that different from an app with a 95.2%
accuracy. For the second type of tasks, if a
simple model can do a reasonable job,
complex models must perform significantly
better to justify the complexity.

In recent years, there have been many
critics of ML leaderboards, both research

leaderboards such as GLUE and
competitions such as Kaggle.

An obvious argument is that in these
competitions, many hard steps needed for
building ML systems are already done for
you™®,

A less obvious argument is that due to the
multiple-hypothesis testing scenario that
happens when you have multiple teams
testing on the same hold-out test set, a
model can do better than the rest just by



chancel®.

The misalignment of interests between
research and production has been noticed
by researchers. In an EMNLP 2020
paper, Ethayarajh and Jurafsky argued
that benchmarks have helped drive
advances in NLP by incentivizing the
creation of more accurate models at the
expense of other qualities valued by
practitioners such as compactness,
fairness, and energy efficiency?’.

Computational priority

When designing an ML system, people who
haven’t deployed an ML system often make
the mistake of focusing entirely on the model
development part.

During the model development process, you
train different iterations of your model
multiple times. The trained model then runs
inference on the test set once to report the
score. This means training is the bottleneck.



Once the model has been deployed, however,
its job is to do inference, so inference is the
bottleneck. Most research prioritizes fast
training whereas most production prioritizes
fast inference.

Latency vs. throughput

One corollary of this is that research
prioritizes high throughput whereas
production prioritizes low latency. In case
you need a refresh, latency refers to the time
it takes from receiving a query to returning
the result. Throughput refers to how many
queries are processed within a specific period
of time.

For example, the average latency of Google
Translate is the average time it takes from
when a user clicks Translate to when the
translation is shown, and the throughput is
how many queries it processes and serves a
second.

If your system always processes one query at
a time, higher latency means lower



throughput. If the average latency is 10ms,
which means it takes 10ms to process a
query, the throughput is 100 queries/second.
If the average latency is 100ms, the
throughput is 10 queries/second.

However, most modern distributed systems
batch queries to process them together, often
concurrently, higher latency might also mean
higher throughput. If you process 10 queries
at a time and it takes 10ms to run a batch, the
average latency is still 10ms but the
throughput is now 10 times higher—1000
queries/second. If you process 100 queries at
a time and it takes 50ms to run a batch, the
average latency now is 50ms and the
throughput is 2000 queries/second. Both
latency and throughput have increased!

This is further complicated if you want to
batch online queries. Batching requires your
system to wait for enough queries to arrive in
a batch before processing them, which further
increases latency.



In research, you care more about how many
samples you can process in a second
(throughput) and less about how long it takes
for each sample to be processed (latency).
You’re willing to increase latency to increase
throughput, e.g. with aggressive batching.

However, once you deploy your model into
the real world, latency matters a lot. In 2009,
Google’s experiments demonstrated that
increasing web search latency 100 to 400 ms
reduces the daily number of searches per user
by 0.2% to 0.6%*8. In 2019, Booking.com
found that an increase of about 30% in
latency cost about 0.5% in conversion rates
—*“a relevant cost for our business.”'°

Reducing latency might reduce the number of
queries you can process on the same
hardware at a time. If your hardware is
capable of processing much more than one
sample at a time, using it to process only one
sample means making processing one sample
more expensive.



Data

During the research phase, the datasets you
work with are often clean and well-formatted,
freeing you to focus on developing and
training models. They are static by nature so
that the community can use them to
benchmark new architectures and techniques.
This means that many people might have
used and discussed the same datasets, and
quirks of the dataset are known. You might
even find open-source scripts to process and
feed the data directly into your models.

In production, data, if available, is a lot more
messy. It’s noisy, possibly unstructured,
constantly shifting. It’s likely biased, and you
likely don’t know how it’s biased. Annotated
labels, if there are any, are sparse,
imbalanced, outdated, or incorrect. Changing
project or business requirements might
require adding another label class or merging
two existing label classes. This can happen
even after a model has been trained and
deployed. If you work with users’ data, you’ll



also have to worry about privacy and
regulatory concerns.

In research, since you don’t serve your
models to users, you mostly work with
historical data, e.g. data that already exists
and is stored somewhere. In production, most
likely you’ll also have to work with data that
is being constantly generated by users,
systems, and third-party data.

Figure 1-3 is a great graphic by Andrej
Karpathy, head of Al at Tesla, that illustrates
the data problems he encountered during his
PhD compared to his time at Tesla.

Research Production
e Clean e Messy
o Static e Constantly shifting
e Mostly e Historical + streaming
historical data data

e Privacy + regulatory
concerns
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Figure 1-3. Data in research vs. data in production by
Andrej KarpathyZO

Fairness

During the research phase, a model is not yet
used on people, so it’s easy for researchers to
put off fairness as an afterthought: “Let’s try
to get state-of-the-art first and worry about
fairness when we get to production.” When it
gets to production, it’s too late. On top of
that, as of 2021, fairness isn’t yet a metric for
researchers to optimize on. If you optimize
your models for better accuracy or lower
latency, you can show that your models beat
state-of-the-art. But there’s no equivalent
state-of-the-art for fairness metrics.

You or someone in your life might already be
a victim of biased mathematical algorithms
without knowing it. Your loan application
might be rejected because the ML algorithm
picks on your zip code, which embodies
biases about one’s socio-economic
background. Your resume might be ranked



lower because the ranking system employers
use picks on the spelling of your name. Your
mortgage might get a higher interest rate
because it relies partially on credit scores,
which reward the rich and punish the poor.
Other examples of ML biases in the real
world are in predictive policing algorithms,
personality tests administered by potential
employers, college ranking. For even more
galling examples, I recommend Cathy
O’Neil’s Weapon of Math Destruction?'.

ML algorithms don’t predict the future, but
encode the past, perpetuating the biases in the
data and more. When ML algorithms are
deployed at scale, they can discriminate
against people at scale. If a human operator
might only make sweeping judgments about a
few individuals at a time, an ML algorithm
can make sweeping judgments about millions
in split seconds. This can especially hurt
members of minority groups because
misclassification on them has minor effects
on models’ overall performance metrics.



If an algorithm can already make correct
predictions on 98% of the population, and
improving the predictions on the other 2%
would incur multiples of cost, some
companies might, unfortunately, choose not
to do it. During a McKinsey & Company
research in 2019, only 13% of the large
companies surveyed said they are taking steps
to mitigate risks to equity and fairness, such

as algorithmic bias and discrimination®?.

Interpretability

In early 2020, the Turing Award winner
Professor Geoffrey Hinton proposed a
heatedly debated question about the
importance of interpretability in ML systems.

“Suppose you have cancer and you have to
choose between a black box Al surgeon
that cannot explain how it works but has a
90% cure rate and a human surgeon with
an 80% cure rate. Do you want the Al
surgeon to be illegal?”?3

A couple of weeks later, when I asked this



question to a group of 30 technology
executives at public non-tech companies,
only half of them would want the highly
effective but unable to explain Al surgeon to
operate on them. The other half wanted the
human surgeon.

While most of us are comfortable with using
a microwave without understanding how it
works, many don’t feel the same way about
Al yet, especially if that Al makes important
decisions about their lives.

Since most ML research is still evaluated on a
single objective, model performance,
researchers aren’t incentivized to work on
model interpretability. However,
interpretability isn’t just optional for most
ML use cases in the industry, but a
requirement.

First, interpretability is important for users,
both business leaders and end-users, to
understand why a decision is made so that
they can trust a model and detect potential



biases mentioned above. Second, it’s
important for developers to debug and
improve a model.

Just because interpretability is a requirement
doesn’t mean everyone is doing it. As of
2019, only 19% of large companies are
working to improve the explainability of their
algorithms?4,

Discussion

Some might argue that it’s okay to know only
the academic side of ML because there are
plenty of jobs in research. The first part —
it’s okay to know only the academic side of
ML — is true. The second part is false.

While it’s important to pursue pure research,
most companies can’t afford it unless it leads
to short-term business applications. This is
especially true now that the research
community took the “bigger, better”
approach. Oftentimes, new models require a
massive amount of data and tens of millions
of dollars in compute alone.



As ML research and off-the-shelf models
become more accessible, more people and
organizations would want to find applications
for them, which increases the demand for ML
in production.

The vast majority of ML-related jobs will be,
and already are, in productionizing ML.

Machine learning systems vs.
traditional software

Since ML is part of software engineering
(SWE), and software has been successfully
used in production for more than half a
century, some might wonder why we don’t
just take tried-and-true best practices in
software engineering and apply them to ML.

That’s an excellent idea. In fact, ML
production would be a much better place if
ML experts were better software engineers.
Many traditional SWE tools can be used to
develop and deploy ML applications.

However, many challenges are unique to ML



applications and require their own tools. In
SWE, there’s an underlying assumption that
code and data are separated. In fact, in SWE,
we want to keep things as modular and
separate as possible (see Separation of
concerns).

On the contrary, ML systems are part code,
part data, and part artifacts created from the
two. The trend in the last decade shows that
applications developed with the most/best
data win. Instead of focusing on improving
ML algorithms, most companies will focus
on improving their data. Because data can
change quickly, ML applications need to be
adaptive to the changing environment which
might require faster development and
deployment cycles.

In traditional SWE, you only need to focus on
testing and versioning your code. With ML,
we have to test and version our data too, and
that’s the hard part. How to version large
datasets? How to know if a data sample is
good or bad for your system? Not all data


https://en.wikipedia.org/wiki/Separation_of_concerns

samples are equal -- some are more valuable
to your model than others. For example, if
your model has already trained on 1M scans
of normal lungs and only 1000 scans of
cancerous lungs, a scan of a cancerous lung is
much more valuable than a scan of a normal
lung. Indiscriminately accepting all available
data might hurt your model’s performance
and even make it susceptible to data
poisoning attacks (see Figure 1-4).

IMAGE TO COME

Figure 1-4. An example of how a face recognition system can
be poisoned, using malicious data, to allow unauthorized
people to pose as someone else. Targeted Backdoor Attacks
on Deep Learning Systems Using Data Poisoning (Chen et
al., 2017)

The size of ML models gives another


https://arxiv.org/abs/1712.05526

challenge. As of 2020, it’s common for ML
models to have hundreds of millions, if not
billions, of parameters, which requires GBs
of RAM to load them into memory. A few
years from now, a billion parameters might
seem quaint—Iike can you believe the
computer that sent men to the moon only had
32MB of RAM?

However, for now, getting these large models
into production, especially on edge devices?>,
is a massive engineering challenge. Then
there is the question of how to get these
models to run fast enough to be useful. An
autocompletion model is useless if the time it
takes to suggest the next character is longer

than the time it takes for you to type.

Monitoring and debugging these models in
production is also non-trivial. As ML, models
get more complex, coupled with the lack of
visibility into their work, it’s hard to figure
out what went wrong or be alerted quickly
enough when things go wrong.



The good news is that these engineering
challenges are being tackled at a breakneck
pace. Back in 2018, when the BERT
(Bidirectional Encoder Representations from
Transformers) paper first came out, people
were talking about how BERT was too big,
too complex, and too slow to be practical.
The pretrained large BERT model has 340M
parameters and is 1.35GB2. Fast forward
two years later, BERT and its variants were
already used in almost every English search
on Google?’.

Designing ML Systems in
Production

Now that we’ve discussed what it takes to
develop and deploy an ML system, let’s get
to the fun part of actually designing one. This
section aims to give you an overview of
machine learning systems design. It starts by
explaining what machine learning systems
design is and covers the requirements for ML
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systems. We will then go over the iterative
process for designing systems to meet those
requirements.

ML systems design is the process of defining
all the components of an ML system,
including interface, algorithms, data,
infrastructure, and hardware, so that the
system satisfies specified requirements.

Requirements for ML Systems

Before building a system, it’s essential to
defy requirements for that system.
Requirements vary from use case to use case.
However, most systems should have these
four characteristics: reliable, scalable,
maintainable, and adaptable.

We’ll walk through each of these concepts in
detail. Let’s take a closer look at reliability
first.

Reliability

The system should continue to perform the



correct function at the desired level of
performance even in the face of adversity
(hardware or software faults, and even human
error).

“Correctness” might be difficult to determine
for ML systems. For example, your system
might call the function “.predict()” correctly,
but the predictions are wrong. How do we
know if a prediction is wrong if we don’t
have ground truth labels to compare it with?

With traditional software systems, you often
get a warning, such as a system crash or
runtime error or 404. However, ML systems
fail silently. End users don’t even know that
the system has failed and might have kept on
using it as if it was working.

Scalability

As the system grows (in data volume, traffic
volume, or complexity), there should be
reasonable ways of dealing with that growth.

Scaling isn’t just up-scaling?® — expanding



the resources to handle growth. In ML, it’s
also important to down-scale — reducing the
resources when not needed. For example, at
peak, your system might require 100 GPUs.
However, most of the time, your system
needs only 10 GPUs. Keeping 100 GPUs up
all the time can be costly, so your system
should be able to scale down to 10 GPUs.

An indispensable feature in many cloud
services is autoscaling: automatically scaling
up and down the number of machines
depending on usage. This feature can be
tricky to implement. Even Amazon fell
victim to this when their autoscaling feature
failed on Prime Day, causing their system to
crash. An hour downtime was estimated to
cost it between $72 million and $99

million?°.

Maintainability

There are many people who will work on an
ML system. They are ML engineers, DevOps
engineers, and subject matter experts (SMEs).



They might come from very different
backgrounds, with very different languages
and tools, and might own different parts of
the process. It’s important to structure your
project and set up your infrastructure in a way
such that different contributors can work
using tools that they are comfortable with,
instead of one group of contributors forcing
their tools onto other groups. When a
problem occurs, different contributors should
be able to work together to identify the
problem and implement a solution without
finger-pointing. We’ll go more into this in
chapter 7.

Adaptability

To adapt to changing data distributions and
business requirements, the system should
have some capacity for both discovering
aspects for performance improvement and
allowing updates without service interruption.

Because ML systems are part code, part data,
and data can change quickly, ML systems



need to be able to evolve quickly. This is
tightly linked to maintainability. We’ll go
more into this in chapter 7.

Iterative Process

Developing an ML system is an iterative and,
in most cases, never ending processBO. You
do reach the point where you have to put the
system into production, but then that system
will constantly need to be monitored and
updated.

Before deploying my first ML system, I
thought the process would be linear and
straightforward. I thought all I had to do was
to collect data, train a model, deploy that
model, and be done. However, I soon realized
that the process looks more like a cycle with
a lot of back and forth between different
steps.

For example, here is one workflow that you
might encounter when building an ML model
to predict whether an ad should be shown



when users enter a search query®?.

1.

o A W N

Choose a metric to optimize. For
example, you might want to optimize
for impressions -- the number of
times an ad is shown.

Collect data and obtain labels.
Engineer features.
Train models.

During error analysis, you realize
that errors are caused by wrong
labels, so you relabel data.

. Train model again.

During error analysis, you realize
that your model always predicts that
an ad shouldn’t be shown, and the
reason is because 99.99% of the data
you have is no-show (an ad
shouldn’t be shown for most
queries). So you have to collect more
data of ads that should be shown.



8. Train model again.

9. Model performs well on your
existing test data, which is by now
two months ago. But it performs
poorly on the test data from
yesterday. Your model has degraded,
so you need to collect more recent
data.

10. Train model again.
11. Deploy model.

12. Model seems to be performing well
but then the business people come
knocking on your door asking why
the revenue is decreasing. It turns
out the ads are being shown but few
people click on them. So you want to
change your model to optimize for
clickthrough rate instead.

13. Go to step 1.

Figure 1-5 is an oversimplified representation



of what the iterative process for developing
ML systems in production looks like.
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Figure 1-5. The process of developing an ML system looks
more like a cycle with a lot of back and forth between steps.

While we’ll take a deeper dive into what each
of these steps mean in practice in later
chapters, let’s take a brief look at what
happens during each of the steps.

Step 1. Project scoping

A project starts with scoping the project,
laying out goals & objectives, constraints,
and evaluation criteria. Stakeholders
should be identified and involved.
Resources should be estimated and
allocated.

Step 2. Data engineering

Data used and generated by ML systems
can be large and diverse, which requires
scalable infrastructure to process and
access it fast and reliably. Data
engineering covers data sources, data
formats, data processing, and data
manipulation to create training data.



Step 3. ML model development

From raw data, you need to create
training datasets and possibly label them,
then generate features, train models,
optimize models, and evaluate them. This
is the stage that requires the most ML
knowledge and is most often covered in
ML courses.

Step 4. Deployment

After a model is developed, it needs to be
made accessible to users. Developing an
ML system is like writing—you will
never reach the point when your system is
done. But you do reach the point when
you have to put your system out there.

Step 5. Monitoring and continual learning

Once in production, models need to be
monitored for performance decay and
maintained to be adaptive to changing
environments and changing requirements.



Step 6. Business analysis

Model performance needs to be evaluated
against business goals and analyzed to
generate business insights. These insights
can then be used to eliminate
unproductive projects or scope out new
projects.

Summary

I hope this chapter has given you a glimpse
into what it takes to bring an ML system into
production, how they differ from ML projects
in a research setting, as well as how they
differ from traditional software engineering
systems.

It’s ambitious because, as we’ve covered in
this chapter, ML systems are complex,
consisting of many different components and
involving many different stakeholders. They
can be deployed to solve a wide range of
tasks, both for consumers and enterprises.



Each task also comes with its own challenges
and requirements. The effort is further
complicated by the fact that as ML adoption
matured, tools and best practices for ML
systems will also evolve.

It’s impossible to cover every aspect of ML
systems in production, but I hope that this
chapter has covered what I believe to be most
applicable to ML systems in a wide range of
tasks. I hope that this chapter can help
mitigate surprises and help you to become
better prepared when evaluating and planning
the use of ML in your projects. If you believe
that there’s something I’ve missed, please let
me know.

Fortunately, complex ML systems are made
up of simpler building blocks. Now that
we’ve covered the high-level overview of an
ML system in production, we’ll zoom into its
building blocks in the following chapters,
starting with the fundamentals of data
engineering in the next chapter. If any of the
challenges mentioned in this chapter seems



abstract to you, I hope that specific examples
in the following chapters will make them
more concrete.

1 Zero-Shot Translation with Google’s Multilingual
Neural Machine Translation System (Schuster et al.,
Google Al Blog 2016)

2 A method to image black holes (MIT News 2019)

3 Ididn’t ask whether ML is sufficient because the
answer is always no.

4 Patterns are different from distributions. We know the
distribution of the outcomes of a fair die, but there are
no patterns in the way the outcomes are generated.

5 We’ll go over online learning in Chapter 7.

6 Kernel-predicting convolutional networks for
denoising Monte Carlo renderings (Bako et al., ACM
Transactions on Graphics 2017)

7 Deep Shading: Convolutional Neural Networks for
Screen-Space Shading (Nalbach et al., 2016)

8 2020 state of enterprise machine learning
(Algorithmia, 2020)

9 Average mobile app user acquisition costs worldwide
from September 2018 to August 2019, by user action
and operating system (Statista, 2019)

10 Valuing Lyft Requires A Deep Look Into Unit


http://ai.googleblog.com/2016/11/zero-shot-translation-with-googles.html
https://news.mit.edu/2016/method-image-black-holes-0606
https://studios.disneyresearch.com/wp-content/uploads/2019/03/Kernel-Predicting-Convolutional-Networks-for-Denoising-Monte-Carlo-Renderings-Paper33.pdf
https://arxiv.org/abs/1603.06078
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://www.statista.com/statistics/185736/mobile-app-average-user-acquisition-cost/
https://www.forbes.com/sites/jeffhenriksen/2019/05/17/valuing-lyft-requires-a-deep-look-into-unit-economics

Economics (Forbes, 2019)

11 Startup Killer: the Cost of Customer Acquisition
(David Skok, 2018)

12 Apple, Google, Microsoft, Amazon each has a brand
estimated to be worth in the order of hundreds of
millions dollars (Forbes, 2020)

13 It’s common for the ML and data science teams to be
among the first to go during a company’s mass layoff.
See IBM, Uber, Airbnb, and this analysis on How Data
Scientists Are Also Susceptible To The Layoffs Amid
Crisis (AIM, 2020).

14 Ensemble learning (Wikipedia)

15 Machine learning isn’t Kaggle competitions (Julia
Evans, 2014)

16 AI competitions don’t produce useful models (Luke
Oakden-Rayner, 2019)

17 Utility is in the Eye of the User: A Critique of NLP
Leaderboards (Ethayarajh and Jurafsky, EMNLP
2020)

18 Speed Matters for Google Web Search (Jake Brutlag,
Google 2009)

19 150 Successful Machine Learning Models: 6 Lessons
Learned at Booking.com (Bernardi et al., KDD 2019)

20 Building the Software 2.0 Stack (Andrei Karpathy,
Spark+AI Summit 2018)

21 Weapon of Math Destruction (Cathy O’Neil, Crown
Books 2016)


https://www.forentrepreneurs.com/startup-killer/
https://www.forbes.com/the-worlds-most-valuable-brands
https://www.theregister.com/2020/05/22/ibm_layoffs/
https://observer.com/2020/05/uber-layoff-coronavirus-pandemic-cuts-high-tech-division/
https://adage.com/article/cmo-strategy/airbnb-job-cuts-took-heavy-toll-marketers-designers-and-data-scientists/2256246
https://analyticsindiamag.com/how-data-scientists-are-also-susceptible-to-the-layoffs-amid-crisis/
https://en.wikipedia.org/wiki/Ensemble_learning
https://jvns.ca/blog/2014/06/19/machine-learning-isnt-kaggle-competitions/
https://lukeoakdenrayner.wordpress.com/2019/09/19/ai-competitions-dont-produce-useful-models/
https://arxiv.org/abs/2009.13888
https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://blog.acolyer.org/2019/10/07/150-successful-machine-learning-models/
https://www.youtube.com/watch?v=y57wwucbXR8

22 Al Index 2019 (Stanford HAI, 2019)

23
https://twitter.com/geoffreyhinton/status/12305922384¢

24 Al Index 2019 (Stanford HAI, 2019)
25 We’ll cover edge devices in Chapter 6. Deployment.

26 BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding (Devlin et
al., 2018)

27 Google SearchOn 2020.

28 Up-scaling and down-scaling are two aspects of
“scaling out”, which is different from “scaling up”.
Scaling out is adding more equivalently functional
components in parallel to spread out a load. Scaling up
is making a component larger or faster to handle a
greater load.

29 Wolfe, Sean. 2018. “Amazon’s one hour of downtime
on Prime Day may have cost it up to $100 million in
lost sales.” Business Insider.
https://www.businessinsider.com/amazon-prime-day-
website-issues-cost-it-millions-in-lost-sales-2018-7.

30 Which, as an early reviewer pointed out, is a property
of traditional software.

31 Praying and crying not featured but present through
the entire process.
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Chapter 2. Data
Engineering
Fundamentals

A NOTE FOR EARLY RELEASE
READERS

With Early Release ebooks, you get
books in their earliest form—the author’s
raw and unedited content as they write—
so you can take advantage of these
technologies long before the official
release of these titles.

This will be the 2nd chapter of the final
book. Please note that the GitHub repo
will be made active later on.

If you have comments about how we
might improve the content and/or



examples in this book, or if you notice
missing material within this chapter,
please reach out to the author at
chip@huyenchip.com.

The rise of machine learning in recent years
is tightly coupled with the rise of big data.
Big data systems, even without machine
learning, are complex. If you haven’t spent
years and years working with them, it’s easy
to get lost in acronyms. There are many
challenges and possible solutions that these
systems generate. Industry standards, if there
are any, evolve quickly as new tools come
out and the needs of the industry expand,
creating a dynamic and ever-changing
environment. If you look into the data stack
for different tech companies, it might seem
like each is doing its own thing.

In this chapter, we’ll cover the basics of data
engineering that will, hopefully, give you a
steady piece of land to stand on as you
explore the landscape for your own needs. It



will start with the question: how important
data is for building intelligent systems? It will
then cover the basics of data engineering.
Knowing how to collect, handle, and process
an increasingly growing amount of data is
essential to people who want to build ML
systems in production. If you’re already
familiar with data engineering fundamentals,
you might want to move directly to Chapter 3
to learn more about how to sample and
generate labels to create training data.

Mind vs. Data

Progress in the last decade shows that the
success of an ML system depends largely on
the data it was trained on. Instead of focusing
on improving ML algorithms, most
companies focus on managing and improving
their data.

Despite the success of models using massive
amounts of data, many are skeptical of the
emphasis on data as the way forward. In the


https://anand.typepad.com/datawocky/2008/03/more-data-usual.html

last three years, at every academic conference
I attended, there were always some debates
among famous academics on the power of
mind vs. data. Mind might be disguised as
inductive biases or intelligent architectural
designs. Data might be grouped together with
computation since more data tends to require
more computation.

In theory, you can both pursue intelligent
design and leverage large data and
computation, but spending time on one often
takes time away from another.

On the mind over data camp, there’s Dr.
Judea Pearl, a Turing Award winner best
known for his work on causal inference and
Bayesian networks. The introduction to his
book, “The book of why”, is entitled “Mind
over data,” in which he emphasizes: “Data is
profoundly dumb.” In one of his more
controversial posts on Twitter, he expressed
his strong opinion against ML approaches
that rely heavily on data and warned that
data-centric ML people might be out of job in


http://www.incompleteideas.net/IncIdeas/BitterLesson.html

3-5 years.

“ML will not be the same in 3-5 years, and
ML folks who continue to follow the
current data-centric paradigm will find
themselves outdated, if not jobless. Take
note.

There’s also a milder opinion from Professor
Christopher Manning, Director of the
Stanford Artificial Intelligence Laboratory,
who argued that huge computation and a
massive amount of data with a simple
learning algorithm create incredibly bad
learners. The structure allows us to design
systems that can learn more from fewer data?.

Many people in ML today are on the data
over mind camp. Professor Richard Sutton, a
professor of computing science at the
University of Alberta and a distinguished
research scientist at DeepMind, wrote a great
blog post in which he claimed that
researchers who chose to pursue intelligent
designs over methods that leverage



computation will eventually learn a bitter
lesson.

“The biggest lesson that can be read from
70 years of Al research is that general
methods that leverage computation are
ultimately the most effective, and by a
large margin. ... Seeking an improvement
that makes a difference in the shorter term,
researchers seek to leverage their human
knowledge of the domain, but the only
thing that matters in the long run is the
leveraging of computation. 3

When asked how Google search was doing so
well, Peter Norvig, Google’s Director of
Search, emphasized the importance of having
a large amount of data over intelligent
algorithms in their success: “We don’t have
better algorithms. We just have more data.”*

Dr. Monica Rogati, Former VP of Data at
Jawbone, argued that data lies at the
foundation of data science. If you want to use
data science, a discipline of which machine
learning is a part of, to improve your products



or processes, you need to start with building
out your data, both in terms of quality and
quantity. Without data, there’s no data
science.
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Figure 2-1. The data science hierarchy of needs (Monica
Rogati, 2017°)

The debate isn’t about whether finite data is
necessary, but whether it’s sufficient. The
term finite here is important, because if we
had infinite data, we can just look up the
answer. Having a lot of data is different from
having infinite data.

Regardless of which camp will prove to be
right eventually, no one can deny that data is
essential, for now. Both the research and
industry trends in the recent decades show the
success of machine learning relies more and
more on the quality and quantity of data.
Models are getting bigger and using more
data. Back in 2013, people were getting
excited when the One Billion Words
Benchmark for Language Modeling was
released, which contains 0.8 billion tokens®,
Six years later, OpenAl’s GPT-2 used a
dataset of 10 billion tokens. And another year
later, GPT-3 used 500 billion tokens. The
growth rate of the sizes of datasets is shown



in Figure 2-2.
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Figure 2-2. The size of the datasets used for language



models over time (log scale)

Even though much of the progress in deep
learning in the last decade was fueled by an
increasingly large amount of data, more data
doesn’t always lead to better performance for
your model. More data at lower quality, such
as data that is outdated or data with incorrect
labels, might even hurt your model’s
performance.

Data Sources

An ML system works with data from many
different sources. They have different
characteristics with different access patterns,
can be used for different purposes, and
require different processing methods.
Understanding the sources your data comes
from can help you use your data more
efficiently. This section aims to give a quick
overview of different data sources to those
unfamiliar with data in production. If you’ve
already worked with ML in production for a



while, feel free to skip this section.

One source is user input data, data explicitly
input by users, which is often the input on
which ML models can make predictions.
User input can be texts, images, videos,
uploaded files, etc. If there is a wrong way
for humans to input data, humans are going to
do it, and as a result, user input data can be
easily mal-formatted. If user input is
supposed to be texts, they might be too long
or too short. If it’s supposed to be numerical
values, users might accidentally enter texts. If
you expect users to upload files, they might
upload files in the wrong formats. User input
data requires more heavy-duty checking and
processing. Users also have little patience. In
most cases, when we input data, we expect to
get results back immediately. Therefore, user
input data tends to require fast processing.

Another source is system-generated data.
This is the data generated by different
components of your systems, which include
various types of logs and system outputs such



as model predictions.

Logs can record the state of the system and
significant events in the system, such as
memory usage, number of instances, services
called, packages used, etc. It can record the
results of different jobs, including large batch
jobs for data processing and model training.
These types of logs provide visibility into
how the system is doing, and the main
purpose of this visibility is for debugging and
possibly improving the application. Most of
the time, you don’t have to look at this type
of log, but they are essential when something
is on fire.

Because logs are system generated, they are
much less likely to be mal-formatted the way
users input data is. Overall, logs don’t need to
be processed as soon as they arrive, the way
you would want to process user input data.
For many use cases, it’s acceptable to process
logs periodically, such as hourly or even
daily. However, you might still want to
process your logs fast to be able to detect and



be notified whenever something interesting
happens’.

Because debugging ML systems is hard, it’s a
common practice to log everything you can.
This means that your volume of logs can
grow very, very quickly. This leads to two
problems. The first is that it can be hard to
know where to look because signals are lost
in the noise. There have been many services
that process and analyze logs, such as
Logstash, DataDog, Logz, etc. Many of them
use ML models to help you process and make
sense of your massive amount of logs.

The second problem is how to store a rapidly
growing amount of logs. Luckily, in most
cases, you only have to store logs for as long
as they are useful, and can discard them when
they are no longer relevant for you to debug
your current system. If you don’t have to
access your logs frequently, they can also be
stored in low-access storage that costs much
less than higher-frequency-access storage.



System also generates data to record users’
behaviors, such as clicking, choosing a
suggestion, scrolling, zooming, ignoring a
popup, or spending an unusual amount of
time on certain pages. Even though this is
system-generated data, it’s still considered
part of user data® and might be subject to
privacy regulations. This kind of data can
also be used for ML systems to make
predictions and to train their future versions.

There are also internal databases, generated
by various services and enterprise
applications in a company. These databases
manage their assets such as inventory,
customer relationship, users, and more. This
kind of data can be used by ML models
directly or by various components of an ML
system. For example, when users enter a
search query on Amazon, one or more ML
models will process that query to detect the
intention of that query — what products users
are actually looking for? — then Amazon
will need to check their internal databases for



the availability of these products before
ranking them and showing them to users.

Then there’s the wonderfully weird word of
third-party data that, to many, is riddled
with privacy concerns. First-party data is the
data that your company already collects about
your users or customers. Second-party data is
the data collected by another company on
their own customers that they make available
to you, though you’ll probably have to pay
for it. Third-party data companies collect data
on the public who aren’t their customers.

The rise of the Internet and smartphones has
made it much easier for all types of data to be
collected. It’s especially easy with
smartphones since each phone has a Mobile
Advertiser ID, which acts as a unique ID to
aggregate all activities on a phone. Data from
apps, websites, check-in services, etc. are
collected and (hopefully) anonymized to
generate activity history for each person.

You can buy all types of data such as social



media activities, purchase history, web
browsing habits, car rentals, political leaning
for different demographic groups getting as
granular as men, age 25-34, working in tech,
living in the Bay Area. From this data, you
can infer information such as people who like
brand A also like brand B. This data can be
especially helpful for systems such as
recommendation systems to generate results
relevant to users’ interests. Third-party data is
usually sold as structured data after being
cleaned and processed by vendors.

Data Formats

Once you have data, you might want to store
it (or “persist” it, in technical terms). Since
your data comes from multiple sources with
different access patterns, storing your data
isn’t always straightforward and can be
costly. Some of the questions you might want
to consider are: How do I store multimodal
data? When each sample might contain both



images and texts? Where to store your data so
that it’s cheap and still fast to access? How to
store complex models so that they can be
loaded and run correctly on different
hardware?

The process of converting a data structure or
object state into a format that can be stored or
transmitted and reconstructed later is data
serialization. There are many, many data
serialization formats. When considering a
format to work with, you might want to
consider different characteristics such as
human readability, access patterns, and
whether it’s based on text or binary, which
influences the size of its files. Table 2-1
consists of just a few of the common formats
that you might encounter in your work. For a
more comprehensive list, check out the
wonderful Wikipedia page Comparison of
data-serialization formats.

Table 2-1. Common data formats and where
they are used.


https://en.wikipedia.org/wiki/Comparison_of_data-serialization_formats

Format
JSON
CSVv

Parquet

Avro

Protobuf

Pickle

Binary/Text
Text
Text

Binary

Binary primary

Binary primary

Binary

Human-readable?
Yes

Yes

No

No
No

No

We’ll go over a few of these formats, starting

with JSON.

JSON

JSON, JavaScript Object Notation, is
everywhere. Even though it was derived from
JavaScript, it’s language-independent —
most modern programming languages can
generate and parse JSON. It’s human-
readable. Its key-value pair paradigm is
simple but powerful, capable of handling data



of different levels of structuredness. For
example, your data can be stored in a
structured format like the following.

{

"firstName": "Boatie",
"lastName": "McBoatFace",
"isvibing": true,
"age": 12,
"address": {
"streetAddress": "12 Ocean Drive",

"city": "Port Royal",
"postalCode": "10021-3100"

b
¥

The same data can also be stored in an
unstructured blob of text like the following.

{

"text": "Boatie McBoatFace, aged 12, is
vibing, at 12 Ocean Drive,
Port Royal, 10021-3100"

}

Row-major vs. Column-major
Format

The two formats that are common and
represent two distinct paradigms are CSV and



Parquet. CSV is row-major, which means
consecutive elements in a row are stored next
to each other in memory. Parquet is column-
major, which means consecutive elements in
a column are stored next to each other.

Because modern computers process
sequential data more efficiently than non-
sequential data, if a table is row-major,
accessing its rows will be faster than
accessing its columns in expectation. This
means that for row-major formats, accessing
data by rows is expected to be faster than
accessing data by columns.

Imagine we have a dataset of 1000 examples,
each example has 10 features. If we consider
each example as a row and each feature as a
column, then the row-major formats like CSV
are better for accessing examples, e.g.
accessing all the examples collected today.
Column-major formats like Parquet are better
for accessing features, e.g. accessing the
timestamps of all your examples.






Figure 2-3. Row-major vs. column-major formats

I use CSV as an example of the row-
major format because it’s popular and
generally recognizable by everyone I’ve
talked to in tech. However, some of the
early reviewers of this book got upset by
the mention of CSV because they believe
CSV is a horrible data format. It
serializes non-text characters poorly. For
example, when you write float values to a
CSV file, some precision might be lost —
0.12345678901232323 could be
arbitrarily rounded up as
“0.12345678901” — as complained
about here and here. People on Hacker
News have passionately argued against
using CSV.

Column-major formats allow flexible
column-based reads, especially if your data
is large with thousands, if not millions, of
features. Consider if you have data about


https://stackoverflow.com/questions/12877189/float64-with-pandas-to-csv
https://answers.microsoft.com/en-us/msoffice/forum/all/interesting-excel-behavior-csv-numerical-accuracy/28543e16-78e9-4afe-ae64-f9bb412c9039
https://news.ycombinator.com/item?id=7796268

ride-sharing transactions that has 1000
features but you only want 4 features: time,
location, distance, price. With column-major
formats, you can read the 4 columns
corresponding to these 4 features directly.
However, with row-major formats, if you
don’t know the sizes of the rows, you will
have to read in all columns then filtering
down to these 4 columns. Even if you know
the sizes of the rows, it can still be slow as
you’ll have to jump around the memory,
unable to take advantage of caching.

Row-major formats allow faster data
writes. Consider the situation when you have
to keep adding new individual examples to
your data. For each individual example, it’d
be much faster to write it to a file that your
data is already in a row-major format.

Overall, row-major formats are better when
you have to do a lot of writes, whereas
column-major ones are better when you have
to do a lot of column-based reads.



NUMPY VS. PANDAS

One subtle point that a lot of people don’t
pay attention to, which leads to misuses
of Pandas, is that this library is built
around the columnar format.

Pandas is built around DataFrame, a
concept inspired by R’s Data Frame,
which is column-major. A DataFrame is a
two-dimensional table with rows and
columns.

In NumPy, the major order can be
specified. When an ndarray is created, it’s
row-major by default if you don’t specify
the order. People coming to pandas from
NumPy tend to treat DataFrame the way
they would ndarray, e.g. trying to access
data by rows, and find DataFrame slow.

In Figure 2-4, you can see that accessing
a DataFrame by is so much slower than
accessing the same DataFrame by
column. If you convert this same
DataFrame to a NumPy ndarray,



accessing a row becomes much faster, as
you can see in Figure 2-5.°



# Iterating pandas DataFrame by column
start = time.time()
for col in df.columns:
for item in df[col]:
pass
print(time.time() - start, "seconds')

0.06656503677368164 seconds | =

# Iterating pandas DataFrame by row
n_rows = len(df)
start = tine.time()
for 1 in range(n_rows):
for item in df.iloc[i]:
pass
print(time.time() - start, "seconds')

2,4123919010162354 seconds | =

Figure 2-4. Iterating a pandas DataFrame by column



takes 0.07 seconds but iterating the same DataFrame
by row takes 2.41 seconds.



df np = df.to_numpy()
n_rows, n_cols = df np.shape

# Iterating NumPy ndarray by column
start = time.time()
for j in range(n cols):
for item in df np[:, j]:
pass
print(time.time() - start, "seconds")

0.005830049514770508 seconds| €

# Iterating NumPy ndarray by row
start = time.time()
for 1 in range(n_rows):
for item in df np[i):
pass
print(time.time() - start, "seconds")

0.019572019577026367 seconds| =




Figure 2-5. When you convert the same DataFrame
into a NumPy ndarray, accessing its rows becomes
much faster.

Text vs. Binary Format

CSV and JSON are text files whereas Parquet
files are binary files. Text files are files that
are in plain texts, which usually mean they
are human-readable. Binary files, as the name
suggests, are files that contain 0’s and 1’s,
and meant to be read or used by programs
that know how to interpret the raw bytes. A
program has to know exactly how the data
inside the binary file is laid out to make use
of the file. If you open text files in your text
editors (e.g. VSCode, Notepad), you’ll be
able to read the texts in them. If you open a
binary file in your text editors, you’ll see
blocks of numbers, likely in hexadecimal
values, for corresponding bytes of the file.

Binary files are more compact. Here’s a
simple example to show how binary files can



save space compared to text files. Consider
you want to store the number 1000000. If you
store it in a text file, it’ll require 7 characters,
and if each character is 1 byte, it’ll require 7
bytes. If you store it in a binary file as int32,
it’ll take only 32 bits or 4 bytes.

As an illustration, I use interviews.csv, which
is a CSV file (text format) of 17,654 rows and
10 columns. When I converted it to a binary
format (Parquet), the file size went from
14MB to 6MB, as shown in Figure 2-6.



In [2]: df = pd.read_csv("data/interviews.csv")

In [3]:

Out[3]:

In [4]:

Out[4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17654 entries, 0 to 17653

Data columns (total 10 columns):

# Column
Company
Title
Job
Level
Date
Upvotes
Offer
Experience
Difficulty
9  Review

0o =1 On N = o B O

Non-Null Count

Dtype

17654 non-null
17654 non-null
17654 non-null
17654 non-null
17652 non-null
17654 non-null
17654 non-null
16365 non-null
16376 non-null
17654 non-null

object
object
object
object
object
int64
object
float6d
object
object

dtypes: float64(l), int64(1), object(8)
memory usage: 1.3+ MB

Path("data/interviews.csv").stat().st_size

14200063

4_._

df.to_parquet("data/interviews.parquet")
Path("data/interviews.parquet").stat().st size

6211862

‘_—



Figure 2-6. When stored in CSV format, my interview file is
14MB. But when stored in Parquet, the same file is 6MB.

AWS recommends using the Parquet format
because “the Parquet format is up to 2x faster
to unload and consumes up to 6x less storage
in Amazon S3, compared to text formats.”°

Data Processing and
Storage

In this section, we will cover the basics of
data processing, starting with two major types
of processing: transaction processing and
analytical processing, and their uses. We will
then cover the basics of the ETL (Extract,
Transform, Load) process that you will
inevitably encounter when building an ML
system in production. When dealing with a
large amount of data, a question that often
comes up is whether you want to store your
data as structured or unstructured. In the last
part of this section, we will discuss the pros
and cons of both formats.



Readers tuned into data engineering trends
might wonder why batch processing versus
stream processing is missing from this
chapter. We’ll cover this topic in Chapter 6:
Deployment since I believe it’s more related
to other deployment concepts.

Transactional and Analytical
Databases

Systems in production generate data. To
access and process data generated in
production, there are two types of queries:
transactional queries and analytical queries.
We’ll go over an example to illustrate their
differences.

Imagine you’re running a consumer
application that generates many short
transactions within a short amount of time,
such as food ordering, online shopping,
ridesharing, or money transferring. You want
to process and store these transactions as they
are generated. They need to be processed fast,



in the order of milliseconds. The processing
method needs to have extremely high
availability, because, without a way to record
transactions, you won’t be able to serve your
users. On top of that, the processing needs to
satisfy the ACID (Atomicity, Consistency,
Isolation, Durability) requirements:

e Atomicity: to guarantee that all the
steps in a transaction are completed
successfully as a group. If any steps
between the transaction fail, all other
steps must fail also. For example, if
a user’s payment fails, you don’t
want to still assign a driver to that
user.

e Consistency: to guarantee that all the
transactions coming through must
follow predefined rules. For
example, a transaction must be made
by a valid user.

e [solation: to guarantee that two
transactions happen at the same time



as if they were isolated. Two users
accessing the same data won’t
change it at the same time. For
example, you don’t want two users
to book the same driver at the same
time.

e Durability: to guarantee that once a
transaction has been committed, it
will remain committed even in the
case of a system failure. For
example, after you’ve ordered a ride
and your phone dies, you still want
your ride to come.

Transactional databases are designed to
process online transactions and satisfy all
those requirements. Most of the operations
they do will be inserting, deleting, and
updating an existing transaction. This means
that most transactional databases are more
row-oriented.

Because transactional databases are more
row-oriented, they might not be efficient for



questions such as “What’s the average price
for all the rides in September in San
Francisco?”. This kind of analytical question
requires aggregating data in columns across
multiple rows of data. Analytical databases
are designed for this purpose. They are
efficient with queries that allow you to look
at data from different viewpoints.

Traditionally, transactional databases are
called OnLine Transaction Processing
(OLTP) and analytical databases are called
OnLine Analytical Processing (OLAP).
However, both the terms OLTP and OLAP
have become outdated, as shown in Figure 2-
7, for three reasons. First, the separation of
transactional and analytical databases was
due to limitations of technology — it was
hard to have databases that could handle both
transactional and analytical queries
efficiently. However, this separation is being
closed. Today, we have transactional
databases that can handle analytical queries,
such as CockroachDB. We also have


https://github.com/cockroachdb/cockroach

analytical databases that can handle
transactional queries, such as Apache
Iceberg.


https://iceberg.apache.org/api/#transactions
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Figure 2-7. OLAP and OLTP are outdated terms, as of 2021,
according to Google Trends

Second, in the traditional OLTP or OLAP
paradigms, storage and processing are tightly
coupled — how data is stored is also how
data is processed. This may result in the same
data being stored in multiple databases and
use different processing engines to solve
different types of queries. An interesting
paradigm in the last decade has been to
decouple storage from processing (also
known as compute), as adopted by many data
vendors including Google’s BigQuery,
Snowflake, IBM, and Teradata. In this
paradigm, the data can be stored in the same
place, with a processing layer on top that can
be optimized for different types of queries.

Third, “online” has become an overloaded
term that can mean many different things.
Online used to just mean “connected to the
Internet”. Then, it grew to also mean “in
production” — we say a feature is online
after that feature has been deployed in


https://trends.google.com/trends/explore?date=all&q=OLAP,OLTP
https://cloud.google.com/blog/products/bigquery/separation-of-storage-and-compute-in-bigquery
https://hevodata.com/blog/snowflake-architecture-cloud-data-warehouse/
https://www.ibm.com/cloud/blog/cutting-cord-separating-data-compute-data-lake-object-storage
https://www.teradata.com/Trends/Cloud/The-Power-of-Separating-Cloud-Compute-and-Cloud-Storage

production.

In the data world today, “online” might refer
to the speed at which your data is processed
and made available: online, nearline, or
offline. According to Wikipedia, online
processing means data is immediately
available for input/output. Nearline, which is
short for near-online, means data is not
immediately available, but can be made
online quickly without human intervention.
Offline means data is not immediately
available, and requires some human
intervention to become online.

As the speed at which applications respond to
users queries has become a competitive
advantage, it’s become more and more
important to make data available for use as
fast as possible. In many use cases,
companies want online processing not just for
transactional queries but also for analytical
queries. Online, in this case, is synonymous
to “real-time”. Both online processing and
nearline processing are covered by stream


https://en.wikipedia.org/wiki/Nearline_storage

processing that we’ll cover in Chapter 6.

ETL: Extract, Transform, Load

Even before ML, ETL (extract, transform,
load) was all the rage in the data world, and
it’s still relevant today for ML applications.
ETL refers to the general purpose processing
and aggregating data into the shape and the
format that you want.

Extract is extracting the data you want from
data source(s). Your data will likely come
from multiple sources in different formats.
Some of them will be corrupted or
malformatted. In the extracting phase, you
need to validate your data and reject the data
that doesn’t meet your requirements. For
rejected data, you might have to notify the
sources. Since this is the first step of the
process, doing it correctly can save you a lot
of time downstream.

Transform is the meaty part of the process,
where most of the data processing is done.



You might want to join data from multiple
sources and clean it. You might want to
standardize the value ranges (e.g. one data
source might use “Male” and “Female” for
genders, but another uses “M” and “F” or “1”
and “2”). You can apply operations such as
transposing, deduplicating, sorting,
aggregating, deriving new features, more data
validating, etc..

Load is deciding how and how often to load
your transformed data into the target
destination, which can be a file, a database, or
a data warehouse.

The idea of ETL sounds simple but powerful,
and it’s the underlying structure of the data
layer at many organizations. An overview of
the ETL process is shown in Figure 2-8.
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Figure 2-8. An overview of the ETL process

Structured vs. unstructured data

Structured data is data that follows a
predefined data model, also known as a data
schema. For example, the data model might
specify that each data item consists of two
values: the first value, “name”, is a string at
most 50 characters, and the second value,
“age”, is an 8-bit integer in the range between
0 and 200. The predefined structure makes
your data easier to analyze. If you want to
know the average age of people in the
database, all you have to do is to extract all
the age values and get their mean.

The disadvantage of structured data is that
you have to commit your data to a predefined
schema. If your schema changes, you’ll have
to retrospectively update all your data and/or
the changes will cause mysterious bugs. For
example, you’ve never kept your users’ email
addresses before but now you do, so you have
to retrospectively update email information to



all previous users. One of the strangest bugs
one of my colleagues encountered was when
they could no longer use users’ age with their
transactions, and their data schema replaced
all the null age with 0, and their ML model
thought the transactions were made by people
of 0 years old.

Because business requirements change over
time, committing to a predefined data schema
can become too restricting. Or you might
have data from multiple data sources, many
of the sources are beyond your control, and
it’s impossible to make them follow the same
schema. This is where unstructured data
becomes appealing. Unstructured data is data
that doesn’t adhere to a predefined data
schema. It’s usually text but can also be
numbers, dates, etc. For example, a text file
of logs generated by your ML, model is
unstructured data.

Even though unstructured data doesn’t adhere
to a schema, it might still contain intrinsic
patterns that help you extract structures. For



example, the following text is unstructured,
but you can notice the pattern that each line
contains two values separated by a comma,
the first value is textual and the second value
is numerical. However, there is no guarantee
that all lines must follow this format. You can
add a new line to that text even if that line
doesn’t follow this format.

“Lisa, 43
Jack, 23
Nguyen, 59”

Unstructured data also allows for more
flexible storage options. For example, if your
storage follows a schema, you can only store
data following that schema. But if your
storage doesn’t follow a schema, you can
store any type of data. You can convert all
your data, regardless of types and formats
into bytestrings and store them together.

A repository for storing structured data is
called a data warehouse. A repository for
storing unstructured data is called a data lake.
Data lakes are usually used to store raw data



before processing. Data warehouses are used
to store data that have been processed into
formats ready to be used.

ETL to ELT

When the Internet first became ubiquitous
and hardware had just become so much more
powerful, collecting data suddenly became so
much easier. The amount of data grew
rapidly. Not only that, but the nature of data
also changed. The number of data sources
expanded, and data schemas evolved.

Finding it difficult to keep data structured,
some companies had this idea: “Why not just
store all data in a data lake so we don’t have
to deal with schema changes? Whichever
application needs data can just pull out raw
data from there and process it.” This process
of loading data into storage first then
processing it later is sometimes called ELT
(extract, load, transform). This paradigm
allows for the fast arrival of data since there’s
little processing needed before data is stored.



However, as data keeps on growing, this idea
becomes less attractive. It’s expensive to
store everything, and it’s inefficient to search
through a massive amount of raw data for the
piece of data that you want. At the same time,
as companies switch to running applications
on the cloud and infrastructures become
standardized, data structures also become
standardized. Committing data to a
predefined schema becomes more feasible.

Table 2-2 shows a summary of the key
differences between structured and
unstructured data.

Table 2-2. The key differences between
structured and unstructured data

Structured data Unstructured data

Schema clearly Data doesn’t have to follow a schema
defined

Easy to search and Fast arrival

analyze

Can only handle Can handle data from any source

data with a specific
schema



Schema changes No need to worry about schema
will cause a lot of  changes (yet) as the worry is shifted to

troubles the downstream applications that use
this data

Stored in data Stored in data lakes

warehouses

Summary

In this chapter, we started with the question
about the role of data in building intelligent
systems. There are still many people who
believe that having intelligent algorithms will
eventually trump having a large amount of
data. However, the success of systems
including AlexNet, BERT, GPT showed that
the progress of ML in the last decade relies
on having access to a large amount of data.

Therefore, it’s important for ML practitioners
to know how to manage and process a large
amount of data. This chapter covered the
fundamentals of data engineering that I wish I
knew when I started my ML career, from
handling data from different data sources,


https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://arxiv.org/abs/1810.04805
https://openai.com/blog/better-language-models/

choosing the right data format, to processing
structured and unstructured data. These
fundamentals will hopefully help readers
become better prepared when facing
seemingly overwhelming data in production.

1 Tweet by Dr. Judea Pearl (2020)

2 Deep Learning and Innate Priors (Chris Manning vs.
Yann LeCun debate).

3 The Bitter Lesson (Richard Sutton, 2019)

4 The Unreasonable Effectiveness of Data (Alon
Halevy, Peter Norvig, and Fernando Pereira, Google
2009)

5 The AT Hierarchy of Needs (Monica Rogati, 2017)

6 1 Billion Word Language Model Benchmark (Chelba
et al.,, 2013)

7 “Interesting” in production usually means
catastrophic, such as a crash or when your cloud bill
hits an astronomical amount.

8 An ML engineer once mentioned to me that his team
only used users’ historical product browsing and
purchases to make recommendations on what they
might like to see next. I responded: “So you don’t use
personal data at all?” He looked at me, confused. “If
you meant demographic data like users’ age, location
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then no, we don’t. But I’d say that a person’s browsing
and purchasing activities are extremely personal.”

9 For more Pandas quirks, check out just-pandas-things
(Chip Huyen, GitHub 2020).

10 Announcing Amazon Redshift data lake export: share
data in Apache Parquet format (Amazon AWS 2019).
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Chapter 3. Training
Data

A NOTE FOR EARLY RELEASE
READERS

With Early Release ebooks, you get
books in their earliest form—the author’s
raw and unedited content as they write—
so you can take advantage of these
technologies long before the official
release of these titles.

This will be the 3rd chapter of the final
book. Please note that the GitHub repo
will be made active later on.

If you have comments about how we
might improve the content and/or
examples in this book, or if you notice
missing material within this chapter,



please reach out to the author at
chip@huyenchip.com.

Despite the importance of training data in
developing and improving ML models, ML
curricula are heavily skewed towards
modeling, which is considered by many
researchers and engineers as the “fun” part of
the process. Building a state-of-the-art model
is interesting. Spending days wrangling with
a massive amount of malformatted data that
doesn’t even fit into your machine’s memory
is frustrating.

Data is messy, complex, unpredictable, and
potentially treacherous. If in school, training
data is a cute little puppy then in production,
it’s a Kraken that, if not tamed, can easily
sink your entire ML operation. But this is
precisely the reason why ML engineers
should learn how to handle data well, saving
us time and headache down the road.

In this chapter, we will go over techniques to
obtain or create good training data. Training



data, in this chapter, encompasses all the data
used in the developing phase of ML models,
including the different splits used for training,
validation, and testing (the train, validation,
test splits). This chapter starts with different
sampling techniques to select data for
training. We’ll then address common
challenges in creating training data including
the label multiplicity problem, the lack of
labels problem, the class imbalance problem,
and techniques in data augmentation to
address the lack of data problem.

We use the term “training data” instead of
“training datasets”, because “datasets” denote
a set that is finite and stationery. Data in
production is neither finite nor stationary, a
phenomenon that we will cover in Chapter 7.
Like other steps in building ML systems,
creating training data is an iterative process.
As your model evolves through a project
lifecycle, your training data will likely also
evolve.

Before we move forward, I just want to echo



a word of caution that has been said many
times yet is still not enough. Data is full of
potential biases. These biases have many
possible causes. There are biases caused
during collecting, sampling, or labeling.
Historical data might be embedded with
human biases and ML models, trained on this
data, can perpetuate them. Use data but don’t
trust it too much!

Sampling

Sampling is an integral part of the ML
workflow that is, unfortunately, often
overlooked in typical ML coursework.
Sampling happens in many steps of an ML,
project lifecycle, such as sampling from all
possible real-world data to create training
data, sampling from a given dataset to create
splits for training, validation, and testing, or
sampling from all possible events that happen
within your ML system for monitoring
purposes.



In many cases, sampling is necessary. One
example is when you don’t have access to all
possible data in the real world, the data that
you use to train a model are subsets of real-
world data, created by one sampling method
or another. Another example is when it’s
infeasible to process all the data that you have
access to — because it requires either too
much time or too much compute power or too
much money — you have to sample that data
to create a subset that you can process. In
many other cases, sampling is helpful as it
allows you to accomplish a task faster and
cheaper. For example, when considering a
new model, you might want to do a quick
experiment with a small subset of your data
to see if it’s promising first before running
this new model on all the data you have?.

Understanding different sampling methods
and how they are being used in our workflow
can, first, help us avoid potential sampling
biases, and second, help us choose the
methods that improve the efficiency of the



data we sample.

There are two families of sampling: non-
probability sampling and random sampling.
We will start with non-probability sampling
methods, followed by several common
random methods. We’ll analyze the pros and
cons of each method.

Non-Probability Sampling

Non-probability sampling is when the
selection of data isn’t based on any
probability criteria. Here are some of the
criteria for non-probability sampling.

e Convenience sampling: samples of
data are selected based on their
availability. This sampling method is
popular because, well, it’s
convenient.

e Snowball sampling: future samples
are selected based on existing
samples. For example, to scrape



legitimate Twitter accounts without
having access to Twitter databases,
you start with a small number of
accounts then you scrape all the
accounts in their following, and so
on.

e Judgment sampling: experts decide
what samples to include.

e Quota sampling: you select samples
based on quotas for certain slices of
data without any randomization.

The samples selected by non-probability
criteria are not representative of the real-
world data, and therefore, are riddled with
selection biases. Because of these biases, you
might think that it’s a bad idea to select data
to train ML models using this family of
sampling methods. You’re right.
Unfortunately, in many cases, the selection of
data for ML models is still driven by
convenience.

One example of these cases is language



modeling. Language models are often trained
not with data that is representative of all
possible texts but with data that can be easily
collected — Wikipedia, CommonCrawl,
Reddit.

Another example is data for sentiment
analysis of general text. Much of this data is
collected from sources with natural labels
(ratings) — IMDB reviews, Amazon reviews
— even for the tasks where you want to
predict sentiments of texts that aren’t IMDB
or Amazon reviews. These sources don’t
include people who don’t have access to the
Internet and aren’t willing to put reviews
online.

The third example is data for training self-
driving cars. Initially, data collected for self-
driving cars came largely from two areas:
Phoenix in Arizona (because of its lax
regulations) and the Bay Area in California
(because many companies that build self-
driving cars are located here). Both areas
have generally sunny weather. In 2016,



Waymo expanded its operations to Kirkland,
WA specially for Kirkland’s rainy weather,
but there’s still a lot more self-driving car
data for sunny weather than for rainy or
snowy weather.

Non-probability sampling can be a quick and
easy way to gather your initial data to get
your project off the ground. However, for
reliable models, you might want to use
probability-based sampling, which we will
cover next.

Simple Random Sampling

In the simplest form of random sampling, you
give all samples in the population equal
probabilities of being selected. For example,
you randomly select 10% of all samples,
giving all samples an equal 10% chance of
being selected.

The advantage of this method is that it’s easy
to implement. The drawback is that rare
categories of data might not appear in your
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selection. Consider the case where a class
appears only in 0.01% of your data
population. If you randomly select 1% of
your data, samples of this rare class will
unlikely be selected. Models trained on this
selection might think that this rare class
doesn’t exist.

Stratified Sampling

To avoid the drawback of simple random
sampling listed above, you can first divide
your population into the groups that you care
about and sample from each group separately.
For example, to sample 1% of data that has
two classes A and B, you can sample 1% of
class A and 1% of class B. This way, no
matter how rare class A or B is, you’ll ensure
that samples from it will be included in the
selection. Each group is called a strata, and
this method is called stratified sampling.

One drawback of this sampling method is that
it isn’t always possible, such as when it’s
impossible to divide all samples into groups.



This is especially challenging when one
sample might belong to multiple groups as in
the case of multilabel tasks2. For instance, a
sample can be both class A and class B.

Weighted Sampling

In weighted sampling, each sample is given a
weight, which determines the probability of it
being selected. For example, if you have
three samples A, B, C and want them to be
selected with the probabilities of 50%, 30%,
20% respectively, you can give them the
weights 0.5, 0.3, 0.2.

This method allows you to leverage domain
expertise. For example, if you know that a
certain subpopulation of data, such as more
recent data, is more valuable to your model
and want it to have a higher chance of being
selected, you can give it a higher weight.

This also helps with the case when the data
you have comes from a different distribution
compared to the true data. For example, if in



your data, red samples account for 25% and
blue samples account for 75%, but you know
that in the real world, red and blue have equal
probability to happen, you can give red
samples the weights three times higher than
blue samples.

In Python, you can do weighted sampling
with random.choices as follows:

# Choose two items from the list such
that 1, 2, 3, 4 each has
# 20% chance of being selected, while 100
and 1000 each have only 10% chance.
random.choices(population=[1, 2, 3, 4,
100, 1000],
weights=[0.2, 0.2,

0.2, 0.2, 0.1, 0.1],

k=2)
# This is equivalent to the following
random.choices(population=[1, 1, 2, 2, 3,
3, 4, 4, 100, 1000],

k=2)

A common concept in ML that is closely
related to weighted sampling is sample
weights. Weighted sampling is used to select
samples to train your model with, whereas
sample weights are used to assign “weights”



or “importance” to training samples. Samples
with higher weights affect the loss function
more. Changing sample weights can change
your model’s decision boundaries
significantly, as shown in Figure 3-1.
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Figure 3-1. How sample weights can affect the decision
boundary. On the left is when all samples are given equal
weights. On the right is when samples are given different
weights. Source: SVM: Weighted samples (sklearn), BSD

License.

Importance Sampling

Importance sampling is one of the most
important sampling methods, not just in ML.
It allows us to sample from a distribution
when we only have access to another
distribution.

Imagine you have to sample « from a
distribution P(x), but P(z) is really
expensive, slow, or infeasible to sample from.
However, you have a distribution Q () that
is a lot easier to sample from. So you sample
x from Q(z) instead and weight this sample
by % (z) is called the proposal
distribution or the importance distribution.
Q(z) can be any distribution as long as

Q(x) > 0 whenever P(x) # 0. The equation

below shows that in expectation, = sampled
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from P(X) is equal to z sampled from Q(z)

weighted by %

Epw 2] =3, P(@)z =3, Q (z) 10

P
Q(z)

One example where importance sampling is
used in ML is policy-based reinforcement
learning. Consider the case when you want to
update your policy. You want to estimate the
value functions of the new policy, but
calculating the total rewards of taking an
action can be costly because it requires
considering all possible outcomes until the
end of the time horizon after that action.
However, if the new policy is relatively close
to the old policy, you can calculate the total
rewards based on the old policy instead and
reweight them according to the new policy.
The rewards from the old policy make up the
proposal distribution.

Reservoir Sampling

Reservoir sampling is a fascinating algorithm



that is especially useful when you have to
deal with continually incoming data, which is
usually what you have in production.

Imagine you have an incoming stream of
tweets and you want to sample a certain
number, k, of tweets to do analysis or training
a model on. You don’t know how many
tweets there are but you know you can’t fit
them all in memory, which means you don’t
know the probability at which a tweet should
be selected. You want to ensure that one,
every tweet has an equal probability of being
selected, and two, you can stop the algorithm
at any time and the tweets are sampled with
the correct probability.

One solution for this problem is reservoir
sampling. The algorithm involves a reservoir,
which can be an array, and consists of three
steps:

1. Put the first k elements into the
reservoir.

2. For each incoming nth element,



generate a random number i such
that 1 <i<n.

3. If 1 <i < k: replace the ith element in
the reservoir with the nth element.
Else, do nothing.

This means that each incoming 7" element
has % probability of being in the reservoir.

You can also prove that each element in the
reservoir has % probability of being there.

This means that all samples have an equal
chance of being selected. If we stop the
algorithm at any time, all samples in the
reservoir have been sampled with the correct
probability. Figure 3-2 shows an illustrative
example of how reservoir sampling works.



IMOMM& SO\MPlQS

--------------

(4



Figure 3-2. A visualization of how reservoir sampling works.

Labeling

Despite the promise of unsupervised ML,
most ML models in production today are
supervised, which means that they need
labels to learn. The performance of an ML
model still depends heavily on the quality and
quantity of the labeled data it’s trained on.

There are tasks where data has natural labels
or it’s possible to collect natural labels on the
fly. For example, for predicting the click-
through rate on an ad, labels are whether
users click on an ad or not. Similarly, for
recommendation systems, labels are whether
users click on a recommended item or not.
However, for most tasks, natural labels are
not available or not accessible, and you will
need to obtain labels by other means.

In a talk to my students, Andrej Karpathy,
Director of Al at Tesla, shared an anecdote
about when he decided to have an in-house



labeling team, his recruiter asked how long
he’d need this team for. He responded: “How
long do we need an engineering team for?”
Data labeling has gone from being an
auxiliary task to being a core function of
many ML teams in production.

In this section, we will discuss the challenges
of obtaining labels for your data and their
proposed solutions.

Hand Labels

Anyone who has ever had to work with data
in production has probably felt this at a
visceral level: acquiring hand labels for your
data is difficult for many, many reasons.
First, hand-labeling data can be expensive,
especially if subject matter expertise is
required. To classify whether a comment is
spam, you might be able to find 200
annotators on a crowdsourcing platform and
train them in 15 minutes to label your data.
However, if you want to label chest X-rays,
you’d need to find board-certified



radiologists, whose time is limited and
expensive.

Second, hand labeling poses a threat to
data privacy. Hand labeling means that
someone has to look at your data, which isn’t
always possible if your data has strict privacy
requirements. For example, you can’t just
ship your patient’s medical records or your
company’s confidential financial information
to a third-party service for labeling. In many
cases, your data might not even be allowed to
leave your organization, and you might have
to hire or contract annotators to label your
data on-premise.

Third, hand labeling is slow. While the more
data a person labels, the faster their
annotation speed will become, the
improvement isn’t in order of magnitude.
Labeling 1000 samples takes approximately
10 times longer than labeling 100 samples.
For example, accurate transcription of speech
utterance at phonetic level can take 400 times
longer than the utterance duration. So if you
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want to annotate 1 hour of speech, it’ll take
400 hours or almost 3 working months to do
so. In a study to use ML to help classify lung
cancers from X-rays, my colleagues had to
wait almost a year to obtain sufficient labels.

Slow labeling leads to slow iteration speed
and makes your model less adaptive to
changing environments and requirements. If
the task changes or data changes, you’ll have
to wait for your data to be relabeled before
updating your model. Imagine the scenario
when you have a sentiment analysis model to
analyze the sentiment of every tweet that
mentions your brand. It has only two classes:
NEGATIVE and POSITIVE. However,
after deployment, your PR team realizes that
the most damage comes from angry tweets
and they want to attend to angry messages
faster. So you have to update your sentiment
analysis model to have three classes:
NEGATIVE, POSITIVE, and ANGRY. To
do so, you will need to look at your data
again to see which existing training examples



should be relabeled ANGRY. If you don’t
have enough ANGRY examples, you will
have to collect more data. The longer the
process takes, the more your existing model
performance will degrade.

Label Multiplicity

Often, to obtain enough labeled data,
companies have to use data from multiple
sources and rely on multiple annotators who
have different levels of expertise. These
different data sources and annotators also
have different levels of accuracy. This leads
to the problem of label ambiguity or label
multiplicity: what to do when there are
multiple possible labels for a data instance.

Consider this simple task of entity
recognition. You give three annotators the
following sample and ask them to annotate all
entities they can find.

Darth Sidious, known simply as the Emperor,
was a Dark Lord of the Sith who reigned over
the galaxy as Galactic Emperor of the First



Galactic Empire.

You receive back three different solutions, as
shown in Table 3-1. Three annotators have
identified different entities. Which one should
your model train on? A model trained on data
labeled mostly by annotator 1 will perform
very differently from a model trained on data
labeled mostly by annotator 2.

Table 3-1. Identities identified by different
annotators might be very different.

Annotator # entities Annotation

1 3 [Darth Sidious],
known simply as
the Emperor, was
[Dark Lord of the
Sith] who reigned
over the galaxy as
[Galactic Empero
of the First Galact
Empire]

2 6 [Darth Sidious],
known simply as
the [Emperor],
was a [Dark Lor«
of the [Sith] who



reigned over the
galaxy as [Galact
Emperor] of the
[First Galactic
Empire].

3 4 [Darth Sidious],
known simply as
the [Emperor], we
a [Dark Lord of tt
Sith] who reigned
over the galaxy as
[Galactic Empero
of the First Galact
Empire].

Disagreements among annotators are
extremely common. The higher level of
domain expertise required, the higher the
potential for annotating disagreement®. If one
human-expert thinks the label should be A
while another believes it should be B, how do
we resolve this conflict to obtain one single
ground truth? If human experts can’t agree on
a label, what does human-level performance
even mean?

To minimize the disagreement among



annotators, it’s important to, first, have a
clear problem definition. For example, in the
entity recognition task above, some
disagreements could have been eliminated if
we clarify that in case of multiple possible
entities, pick the entity that comprises the
longest substring. This means Galactic
Emperor of the First Galactic Empire
instead of Galactic Emperor and First
Galactic Empire. Second, you need to
incorporate that definition into training to
make sure that all annotators understand the
rules.

Indiscriminately using data from multiple
sources, generated with different annotators,
without examining their quality can cause
your model to fail mysteriously. Consider a
case when you’ve trained a moderately good
model with 100K data samples. Your ML
engineers are confident that more data will
improve the model performance, so you
spend a lot of money to hire annotators to
label another million data samples.



However, the model performance actually
decreases after being trained on the new data.
The reason is that the new million samples
were crowdsourced to annotators who labeled
data with much less accuracy than the
original data. It can be especially difficult to
remedy this if you’ve already mixed your
data and can’t differentiate new data from old
data.

On top of that, it’s good practice to keep track
of the origin of each of our data samples as
well as its labels, a technique known as data
lineage. Data lineage helps us both flag
potential biases in our data as well as debug
our models. For example, if our model fails
mostly on the recently acquired data samples,
you might want to look into how the new data
was acquired. On more than one occasion,
we’ve discovered that the problem wasn’t
with our model, but because of the unusually
high number of wrong labels in the data that
we’d acquired recently.



Handling the Lack of Hand

Labels

Because of the challenges in acquiring
sufficient high-quality labels, many
techniques have been developed to address
the problems that result. In this section, we
will cover four of them: weak supervision,
semi supervision, transfer learning, and active

learning.

Table 3-2. Summaries for four techniques for
handling the lack of hand labeling data.

Method

Semi supervision

Weak supervision

Transfer learning

How

Leverages
structural
assumptions to
generate labels

Leverages (often
noisy) heuristics to
generate labels

Leverages models

Ground truths
required?

A small number o
initial labels as
seeds to generate
more labels

A small number o
labels are
recommended to
guide the
development of
heuristics

No for zero-shot



pretrained on learning

another task for Yes for fine-tunin

your new task though the numbe
of ground truths
required is often
much smaller thar
what would be
needed if you trail
the model from
scratch.

Active learning Labels data samples Yes
that are most useful
to your model

Weak supervision

If hand labeling is so problematic, what if we
don’t use hand labels altogether? One
approach that has gained popularity is weak
supervision. One of the most popular open-
source tools for weak supervision is Snorkel,
developed at Stanford AI Lab®. The insight
behind weak supervision is that people rely
on heuristics, which can be developed with
subject matter expertise, to label data. For
example, a doctor might use the following
heuristics to decide whether a patient’s case



should be prioritized as emergent.

If the nurse’s note mentions a serious
condition like pneumonia, the patient’s case
should be given priority consideration.

Libraries like Snorkel are built around the
concept of labeling function (LF): a function
that encodes heuristics. The above heuristics
can be expressed by the following function.

def labeling_function(note):
if "pneumonia" in note:
return "EMERGENT"

LFs can encode many different types of
heuristics. Here are some of the heuristics.

e Keyword heuristic, such as the
example above.

e Regular expressions, such as if the
note matches or not matches a
certain regular expression.

e Database lookup, such as if the note
contains the disease listed in the
dangerous disease list.



e The outputs of other models, such as
if an existing system classifies this as
EMERGENT

After you’ve written LFs, you can apply them
to the samples you want to label.

Because LFs encode heuristics, and heuristics
are noisy, LFs are noisy. Multiple label
functions might apply to the same data
examples, and they might give conflicting
labels. One function might think a note is
EMERGENT but another function might
think it’s not. One heuristic might be much
more accurate than another heuristic, which
you might not know because you don’t have
ground truth labels to compare them to. It’s
important to combine, denoise, and reweight
all LFs to get a set of most likely-to-be-
correct labels.
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Figure 3-3. A high level overview of how labeling functions
are combined.

In theory, you don’t need any hand labels for
weak supervision. However, to get a sense of
how accurate your LFs are, a small amount of
hand labels is recommended. These hand
labels can help you discover patterns in your
data to write better LFs.

Weak supervision can be especially useful
when your data has strict privacy
requirements. You only need to see a small,
cleared subset of data to write LFs, which can
be applied to the rest of your data without
looking at it.

With LFs, subject matter expertise can be



versioned, reused, and shared. Expertise
owned by one team can be encoded and used
by another team. If your data changes or your
requirements change, you can just reapply
LFs to your data samples. Table 3-3 shows
some of the advantages of programmatic
labeling over hand labeling.

Table 3-3. The advantages of programmatic
labeling over hand labeling.

Hand labeling Programmatic labeling
Expensive: Cost saving: Expertise can be
Especially when versioned, shared, reused across
subject matter organization

expertise required

Non-private: Need Privacy: Create LFs using a cleared

to ship data to data subsample then apply LFs to

human annotators  other data without looking at
individual samples.

Slow: Time Fast: Easily scale from 1K to 1M
required scales samples

linearly with #

labels needed

Non-adaptive: Adaptive: When changes happen, just
Every change reapply LFs!

requires re-labeling



the data

Here is a case study to show how well weak
supervision works in practice. In a study with
Stanford Medicine®, models trained with
weakly-supervised labels obtained by a single
radiologist after 8 hours of writing labeling
functions had comparable performance with
models trained on data obtained through
almost a year of hand labeling. There are two
interesting facts about the results of the
experiment. First, the models continued
improving with more unlabeled data even
without more labeling functions. Second,
labeling functions were being reused across
tasks. The researchers were able to reuse 6
labeling functions between the CXR (Chest
X-Rays) task and EXR (Extremity X-Rays)
task.
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Figure 3-4. Comparison of the performance of a model
trained on fully supervised labels (FS) and a model trained
with programmatic labels (DP) on CXR and EXR tasks.

My students often ask that if heuristics work
so well to label data, why do we need
machine learning models? One reason is that
your labeling functions might not cover all
your data samples, so you need to train ML
models to generalize to samples that aren’t
covered by any labeling function.

Weak supervision is a simple but powerful
paradigm. However, it’s not perfect. In some
cases, the labels obtained by weak
supervision might be too noisy to be useful.
But it’s often a good method to get you
started when you want to explore the
effectiveness of ML without wanting to
invest too much in hand labeling upfront.

Semi supervision

If weak supervision leverages heuristics to
obtain noisy labels, semi supervision
leverages structural assumptions to generate



new labels based on a small set of initial
labels. Unlike weak supervision, semi
supervision requires an initial set of labels.

Semi-supervised learning is a technique that
was used back in the 90s’, and since then,
many semi-supervision methods have been
developed. A comprehensive review of semi-
supervised learning is out of the scope of this
book. We’ll go over a small subset of these
methods to give readers a sense of how they
are used. For a comprehensive review, |
recommend Semi-Supervised Learning
Literature Survey (Xiaojin Zhu, 2008) and A
survey on semi-supervised learning (Engelen
and Hoos, 2018).

A classic semi-supervision method is self-
training. You start by training a model on
your existing set of labeled data, and use this
model to make predictions for unlabeled
samples. Assuming that predictions with high
raw probability scores are correct, you add
the labels predicted with high probability to
your training set, and train a new model on
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this expanded training set. This goes on until
you’re happy with your model performance.

Another semi supervision method assumes
that data samples that share similar
characteristics share the same labels. The
similarity might be obvious, such as in the
task of classifying the topic of Twitter
hashtags as follows. You can start by labeling
the hashtag “#AI” as Computer Science.
Assuming that hashtags that appear in the
same tweet or profile are likely about the
same topic, given the profile of MIT CSAIL
below, you can also label the hashtags “#ML”
and “#BigData” as Computer Science.

T esuL g
@MIT CSAIL Follows you

MIT's [argest research [ab, the Computer Science & Artfcia
Inelligence Lab.

Figure 3-5. Because #ML and #BigData appears in the same
Twitter profile as #AI, we can assume that they belong to the



same topic.

In most cases, the similarity can only be
discovered by more complex methods. For
example, you might need to use a clustering
method or a K-nearest neighbor method to
discover samples that belong to the same
cluster.

A semi-supervision method that has gained
popularity in recent years is the perturbation-
based method. It’s based on the assumption
that small perturbations to a sample shouldn’t
change its label. So you apply small
perturbations to your training samples to
obtain new training samples. The
perturbations might be applied directly to the
samples (e..g adding white noise to images)
or to their representations (e.g. adding small
values to embeddings of words). The
perturbed samples have the same labels as the
unperturbed samples. We’ll discuss more
about this in the section Perturbation later in
this chapter.



In some cases, SSL approaches have reached
the performance of purely supervised
learning, even when a substantial portion of
the labels in a given dataset has been
discarded®. Semi supervision is the most
useful when the number of training labels is
limited. One thing to consider when doing
semi supervision is how much of this limited
amount should be used for evaluation. If you
evaluate multiple model candidates on the
same test set and choose the one that
performs best on the test set, you might have
chosen a model that overfits the most on the
test set. On the contrary, if you choose
models on a validation set, the value gained
by having a validation set might be less than
the value gained by adding the validation set
to the limited training set.

Transfer learning

Transfer learning refers to the family of
methods where a model developed for a task
is reused as the starting point for a model on a



second task. First, the base model is trained
for a base task such as language modeling.
The base task is usually a task that has cheap
and abundant training data. Language
modeling is a great candidate because it
doesn’t require labeled data. You can collect
any body of text — books, Wikipedia
articles, chat histories — and the task is:
given a sequence of tokens®, predict the next
token.

You then fine-tune this pretrained base model
on the task that you’re interested in, such as
sentiment analysis, intent detection, question
answering, etc. This task is called a
downstream task, and we say that this model
is fine-tuned for this downstream task.

Transfer learning is especially appealing for
tasks that don’t have a lot of labeled data.
Even for tasks that have a lot of labeled data,
using a pretrained model as the starting point
can often boost the performance significantly
compared to training from scratch.



Transfer learning has gained a lot of interest
in recent years for the right reasons. It has
enabled many applications that were
previously impossible due to the lack of
training samples. A non-trivial portion of ML
models in production today are the results of
transfer learning, including object detection
models that leverage models pretrained on
ImageNet and text classification models that
leverage pretrained language models such as
BERT? or GPT-3"1. It also lowers the entry
barriers into ML, as it helps reduce the
upfront cost needed for labeling data to build
ML applications.

A trend that has emerged in the last five years
is that the larger the pretrained base model,
the better its performance on downstream
tasks. Large models are expensive to train.
Based on the configuration of GPT-3, it’s
estimated that the cost of training this model
is in the tens of million USD. Many have
hypothesized that in the future, only a handful
of companies can afford to train large



pretrained models. The rest of the industry
will use these pretrained models directly or
finetune them for their specific needs.

Active learning

Active learning is a method for improving the
efficiency of data labels. The hope here is
that ML models can achieve greater accuracy
with fewer training labels if they can choose
which data samples to learn from. Active
learning is sometimes called query learning,
though this term is getting increasingly
unpopular, because a model (active learner)
sends back queries in the form of unlabeled
samples to be labeled by annotators (usually
humans).

Instead of randomly labeling data samples,
you label the samples that are most helpful to
your models according to some heuristics.
The most straightforward heuristic is
uncertainty measurement — label the
examples that your model is the least certain
about hoping that they will help your model



learn the decision boundary better. For
example, in the case of classification
problems where your model outputs raw
probabilities for different classes, it might
choose the data examples with the lowest
probabilities for the predicted class. Figure 3-
6 illustrates how well this method works on a
toy example.
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Figure 3-6. How uncertainty-based active learning works.
(a) A toy data set of 400 instances, evenly sampled from two
class Gaussians. (b) A model trained on 30 examples
randomly labeled gives an accuracy of 70%. (c) A model



trained on 30 examples chosen by active learning gives an
accuracy of 90%. Image by Burr Settles.1?

Another common heuristic is based on
disagreement among multiple candidate
models. This method is called query-by-
committee. You need a committee of several
candidate models, which are usually the same
model trained with different sets of
hyperparameters. Each model can make one
vote for which examples to label next, which
it might vote based on how uncertain it is
about the prediction. You then label the
examples that the committee disagrees on the
most.

There are other heuristics such as choosing
examples that, if trained on them, will give
the highest gradient updates, or will reduce
the loss the most. For a comprehensive
review of active learning methods, check out
Active Learning Literature Survey (Burr
Settles, 2010).

The examples to be labeled can come from
different data regimes. They can be


http://burrsettles.com/pub/settles.activelearning.pdf

synthesized where your model generates
examples in the region of the input space that
it’s most uncertain about to be labeled®3.
They can come from a stationary distribution
where you’ve already collected a lot of
unlabeled data and your model chooses
examples from this pool to label. They can
come from the real-world distribution where
you have a stream of data coming in, as in
production, and your model chooses
examples from this stream of data to label.

I’m the most excited about active learning
when a system works with real-time data.
Data changes all the time, a phenomenon we
briefly touched on in Chapter 1 and will go
more in detail in Chapter 7. Active learning
in this data regime will allow your model to
learn more effectively in real-time and adapt
faster to changing environments.

Class Imbalance

Class imbalance typically refers to a problem



in classification tasks where there is a
substantial difference in the number of
samples in each class of the training data. For
example, in a training dataset for the task of
detecting lung cancer from X-Ray images,
99.99% of the X-Rays might be of normal
lungs, and only 0.01% might contain
cancerous cells. Class imbalance can also
happen with regression tasks where the labels
are continuous. For example, you build a
model to predict house prices but in your
data, 99% of the houses are priced between
$100,000 and $500,000 and 0.1% of the
houses are priced above $5,000,000.

Challenges of Class Imbalance

ML works well in situations when the data
distribution is more balanced, and not so well
when the classes are heavily imbalanced.
Class imbalance can make learning difficult
for the three following reasons.
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Figure 3-7. ML works well in situations where the classes
are balanced. Image by Andrew Ngl4.

The first reason is that class imbalance often
means that there’s insufficient signal for
your model to learn to detect the minority
classes. In the case where there is a small
number of instances in the minority class, the
problem becomes a few-shot learning
problem where your model only gets to see
the minority class a few times before having
to make a decision on it. In the case where
there is no instance of the rare classes in your
training set, your model might assume that
these rare classes don’t exist.

The second reason is that class imbalance
makes it easier for your model to get stuck in
a non-optimal solution by learning a simple
heuristic instead of learning anything useful
about the underlying structure of the data.
Consider the lung cancer detection example
above. If your model learns to always output
the majority class, its accuracy is already
99.99%. This heuristic can be very hard for



gradient-descent algorithms to beat because a
small amount of randomness added to this
heuristic might lead to worse accuracy.

The third reason is that class imbalance leads
to asymmetric costs of error — the cost of a
wrong prediction on an example of the rare
class might be much higher than a wrong
prediction on an example of the majority
class. For example, misclassification on an X-
Ray with cancerous cells is much more
dangerous than misclassification on an X-Ray
of a normal lung. If your loss function isn’t
configured to address this asymmetry, your
model will treat all examples the same way.
As a result, you might obtain a model that
performs equally well on both majority and
minority classes, while you much prefer a
model that performs less well on the majority
class but much better on the minority one.

When I was in school, most datasets I was
given had more or less balanced classes,
because I imagined that it would be easier for
me to learn about neural networks if I was



free from the huge roadblock caused by class
imbalance. It was a shock for me to start
working and realize that class imbalance is
the norm. In real-world settings, rare events
are often more interesting (or more
dangerous) than regular events, and many
tasks focus on detecting those rare events.

The classical example of tasks with class
imbalance is fraud detection. Most credit
card transactions are not fraudulent. As of
2018, 6.8¢ for every $100 in cardholder
spending is fraudulent. Another is churn
prediction. The majority of your customers
are not planning on cancelling their
subscription. If they are, your business has
more to worry about than churn prediction
algorithms. Other examples include disease
screening — most people, fortunately, don’t
have terminal illness, and resume screening
— 98% of job seekers are eliminated at the
initial resume screening. A less obvious
example of a task with class imbalance is
object detection. Object detection algorithms


https://www.prnewswire.com/news-releases/payment-card-fraud-losses-reach-27-85-billion-300963232.html
https://www.webwire.com/ViewPressRel.asp?aId=184277#.Usw5G7GEit9
https://arxiv.org/abs/1909.00169

currently work by generating a large number
of bounding boxes over an image then
predicting which boxes are most likely to
have objects in them. Most bounding boxes
do not contain a relevant object.

Outside the cases where class imbalance is
inherent in the problem, class imbalance can
also be caused by biases during the sampling
process. Consider the case when you want to
create training data to detect whether an
email is spam or not. You decide to use all
the anonymized emails from your company’s
email database. According to Talos
Intelligence, as of May 2021, nearly 85% of
all emails are spam. But most spam emails
were filtered out before they reached your
company’s database, so in your dataset, only
a small percentage is spam.

Another cause for class imbalance, though
less common, is due to labeling errors. Your
annotators might have read the instructions
wrong or followed the wrong instructions
(thinking there are only two classes


https://talosintelligence.com/reputation_center/email_rep

POSITIVE and NEGATIVE while there are
actually three), or simply made errors.
Whenever faced with the problem of class
imbalance, it’s important to examine your
data to understand the causes of it.

Handling Class Imbalance

Because of its prevalence in real-world
applications, class imbalance has been
thoroughly studied over the last two
decades!®. Class imbalance affects tasks
differently based on the level of imbalance.
Some tasks are more sensitive to class
imbalance than others. Japkowicz showed
that sensitivity to imbalance increases, and
that non-complex, linearly separable
problems are unaffected by all levels of class
imbalance®. Class imbalance in binary
classification problems is a much easier
problem than class imbalance in multiclass
classification problems. Ding et al. showed
that very-deep neural networks—with “very
deep” meaning over 10 layers back in 2017—



performed much better on imbalanced data
than shallower neural networks?!’.

There have been many techniques suggested
to mitigate the effect of class imbalance.
However, as neural networks have grown to
be much larger and much deeper, with more
learning capacity, some might argue that you
shouldn’t try to “fix” class imbalance if that’s
how the data looks like in the real world. A
good model should learn to model that class
imbalance. However, developing a model
good enough for that can be challenging, so
we still have to rely on special training
techniques.

In this section, we will cover three aspects:
choosing the right metrics for your problem,
data-level methods, which means changing
the data distribution to make it less
imbalanced, and algorithm-level methods,
which means changing your learning method
to make it more robust to class imbalance.

These techniques might be necessary but not



sufficient. For a comprehensive survey, I
recommend Survey on deep learning with
class imbalance (Johnson and Khoshgoftaar,
Journal of Big Data 2019).

In practice, ensembles have shown to help
with the class imbalance problemls, but this
isn’t usually why ensembles are used in
production. Ensemble techniques will be
covered in Chapter 5: Model Development
and Evaluation.

Using the right evaluation metrics

The most important thing to do when facing a
task with class imbalance is to choose the
appropriate evaluation metrics. Wrong
metrics will give you the wrong ideas of how
your models are doing, and subsequently,
won’t be able to help you develop or choose
models good enough for your task.

The overall accuracy and error rate are the
most frequently used metrics to report the
performance of ML models. However, they
are insufficient metrics for tasks with class
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imbalance because they treat all classes
equally, which means the performance of
your model on the majority class will
dominate the accuracy. This is especially bad
when the majority class isn’t what you care
about.

Consider a task with two labels: CANCER
(positive) and NORMAL, where 90% of the
labeled data is NORMAL. Consider two
models A and B with the following confusion
matrices.

Table 3-4. Model A’s confusion matrix.

Model A Actual CANCER Actual NORMAL
Predicted 10 10

CANCER

Predicted 90 890

NORMAL

Model A can detect 10 out of 100 CANCER
cases.

Table 3-5. Model B’s confusion matrix.



Model B Actual CANCER Actual NORMAL

Predicted 90 90
CANCER

Predicted 10 810
NORMAL

Model B can detect 90 out of 100 CANCER
cases.

If you’re like most people, you’d probably
prefer model B to make predictions for you
since it has a better chance of telling you if
you actually have cancer. However, they both
have the same accuracy of 0.9.

Metrics that help you understand your
model’s performance with respect to specific
classes would be better choices. Accuracy
can still be a good metric if you use it for
each class individually. The accuracy of
Model A on the CANCER is 10% and the
accuracy of model B on the CANCER class is
90%.

F1 and recall are metrics that measure your
model’s performance with respect to the



positive class in binary classification
problems, as they rely on true positive — an
outcome where the model correctly predicts
the positive class'®. F1 and recall are
asymmetric metrics, which means that their
values change depending on which class is
considered the positive class. In our case, if
we consider CANCER the positive class,
model A’s F1 is 0.17. However, if we
consider NORMAL the positive class, model
A’s F1is 0.95.

In multiclass classification problems, you can
calculate F1 for each individual class.

Table 3-6. Model A and model B have the
same accuracy even though one model is
clearly superior to another.

CANCER (1) NORMAL (0)
Model A 10/100 890/900
Model B 90/100 810/900

Many classification problems can be modeled



as regression problems. Your model can
output a value, and based on that value, you
classify the example. For example, if the
value is greater than 0.5, it’s a positive label,
and if it’s less than or equal to 0.5, it’s a
negative label. This means that you can tune
the threshold to increase the true positive
rate (also known as recall) while decreasing
the false positive rate (also known as the
probability of false alarm), and vice versa.
We can plot the true positive rate against the
false positive rate for different thresholds.
This plot is known as the ROC curve
(Receiver Operating Characteristics). When
your model is perfect, the recall is 1.0, and
the curve is just a line at the top. This curve
shows you how your model’s performance
changes depending on the threshold, and
helps you choose the threshold that works
best for you. The closer to the perfect line the
better your model’s performance.

The area under the curve (AUC) measures the
area under the ROC curve. Since the closer to



the perfect line the better, the larger this area
the better.
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Figure 3-8. ROC curve

Like F1 and recall, the ROC curve focuses
only on the positive class and doesn’t show
how well your model does on the negative
class. Davis and Goadrich suggested that we
should plot precision against recall instead, in
what they termed the Precision-Recall Curve.
They argued that this curve s give a more
informative picture of an algorithm’s
performance on tasks with heavy class

imbalance?°.

Data-level methods: Resampling

Data-level methods modify the distribution of
the training data to reduce the level of
imbalance to make it easier for the model to
learn. A common family of techniques is
resampling. Resampling includes
oversampling, adding more examples from
the minority classes and undersampling,
removing examples of the majority classes.
The simplest way to undersample is to
randomly remove instances from the majority



class, while the simplest way to oversample is
to randomly make copies of the minority
class until you have a ratio that you’re happy
with.

IMAGE TO COME

Figure 3-9. Illustrations of how undersampling and
oversampling works. Image by Rafael Alencar 21

A popular method of undersampling low-
dimensional data that was developed back in
1976 is Tomek links?2. With this technique,
you find pairs of samples from opposite
classes that are close in proximity, and
remove the sample of the majority class in
each pair.

While this makes the decision boundary more
clear and arguably helps models learn the



boundary better, it may make the model less
robust by removing some of the subtleties of
the true decision boundary.

A popular method of oversampling low-
dimensional data is SMOTE. It synthesizes
novel samples of the minority class through
sampling convex?® combinations of existing
data points within the minority class.

Both SMOTE and Tomek Links have only
been proven effective in low-dimensional
data. Many of the sophisticated resampling
techniques, such as Near-Miss?* and one-
sided selection?®, require calculating the
distance between instances or between
instances and the decision boundaries, which
can be expensive or infeasible for high-
dimensional data or in high-dimensional
feature space, such as the case with large
neural networks.

When you resample your training data, never
evaluate your model on resampled data, since
it’ll cause your model to overfit to that



resampled distribution.

Undersampling runs the risk of losing
important data from removing data.
Oversampling runs the risk of overfitting on
training data, especially if the added copies of
the minority class are replicas of existing
data. Many sophisticated sampling techniques
have been developed to mitigate these risks.

One such technique is two-phase learning?®.
You first train your model on the resampled
data. This resampled data can be achieved by
randomly undersampling large classes until
each class has only N instances. You then
finetune your model on the original data.

Another technique is dynamic sampling;:
oversample the low performing classes and
undersample the high performing classes
during the training process. Introduced by
Pouyanfar et al.?’, the method aims to show
the model less of what it has already learned
and more of what it has not.

Algorithm-level methods



If data-level methods mitigate the challenge
of class imbalance by altering the distribution
of your training data, algorithm-level
methods keep the training data distribution
intact but alter the algorithm to make it more
robust to class imbalance.

Because the loss function (or the cost
function) guides the learning process, many
algorithm-level methods involve adjustment
to the loss function. The key idea is that if
there are two instances x; and x5 and the loss
resulting from making the wrong prediction
on x; higher than xz,, the model will
prioritize making the correct prediction on x;
over making the correct prediction on x5. By
giving the training instances we care about
higher weight, we can make the model focus
more on learning these instances.

Let L(x; 6) be the loss caused by the instance
x for the model with the parameter set 6. The
model’s loss is often defined as the average
loss caused by all instances.



L(X;0) =Y, L(z;0)

This loss function values the loss caused by
all instances equally, even though wrong
predictions on some instances might be much
costlier than wrong predictions on other
instances. There are many ways to modify
this cost function. In this section, we will
focus on three of them, starting with cost-
sensitive learning.

Cost-sensitive learning

Back in 2001, based on the insight that
misclassification of different classes incur
different cost, Elkan proposed cost-sensitive
learning where the individual loss function is
modified to take into account this varying
cost?8. The method started by using a cost
matrix to specify Cj;: the cost if class ¢ is
classified as class j. If ¢ = 7, it’s a correct
classification, and the cost is usually 0. If not,
it’s a misclassification. If classifying
POSITIVE examples as NEGATIVE is twice
as costly as the other way around, you can



make Cq twice as high as Cy;.

For example, if you have two classes:
POSITIVE and NEGATIVE, the cost matrix
can look like this.

Table 3-7. Example of a cost matrix

Actual NEGATIVE Actual POSITIVE

Predicted C (0,0) = Coo C(1,0) = Cio
NEGATIVE

Predicted C(0,1) = Co C(1,1)=Cn
POSITIVE

The loss caused by instance x of class i will
become the weighted average of all possible
classifications of instance x.

L (z;0) = >_; CiiP (j|z; 0)

The problem with this loss function is that
you have to manually define the cost matrix,
which is different for different tasks at
different scales.

Class-balanced loss



What might happen with a model trained on
an imbalance dataset is that it’ll bias toward
majority classes and make wrong predictions
on minority classes. What if we punish the
model for making wrong predictions on
minority classes to correct this bias?

In its vanilla form, we can make the weight of
each class inversely proportional to the
number of samples in that class, so that the
rarer classes have higher weights.

N

W, =
" number of samples of class i

The loss caused by instance x of class i will
become as follows, with Loss(x, j) being the
loss when x is classified as class j. It can be
cross entropy or any other loss function.

L (z;0) =W, Z P (j|z; 0) Loss (z, j)

A more sophisticated version of this loss can
take in account the overlapping among



existing samples, such as Class-Balanced
Loss Based on Effective Number of Samples
(Cui et al., CVPR 2019).

Focal loss

In our data, some examples are easier to
classify than others, and our model might
learn to classify them quickly. We want to
incentivize our model to focus on learning the
samples they still have difficulty classifying.
What if we adjust the loss so that if a sample
has a lower probability of being right, it’ll
have a higher weight? This is exactly what
Focal Loss does?°.

IMAGE TO COME

Figure 3-10. The model trained with focal loss (FL) shows
reduced loss values compared to the model trained with
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cross entropy loss (CE). Image by Lin et al.3°

Data Augmentation

Data augmentation is a family of techniques
that are used to increase the amount of
training data. Traditionally, these techniques
are used for tasks that have limited training
data, such as in medical imaging projects.
However, in the last few years, they have
shown to be useful even when we have a lot
of data because augmented data can make our
models more robust to noise and even
adversarial attacks.

Data augmentation has become a standard
step in many computer vision tasks and is
finding its way into natural language
processing (NLP) tasks. The techniques
depend heavily on the data format, as image
manipulation is different from text
manipulation. In this section, we will cover
three main types of data augmentation:
simple label-preserving transformations,



perturbation, which is a term for “adding
noises”, and data synthesis. In each type,
we’ll go over examples for both computer
vision and NLP.

Simple Label-Preserving
Transformations

In computer vision, the simplest data
augmentation technique is to randomly
modify an image while preserving its label.
You can modify the image by cropping,
flipping, rotating, inverting (horizontally or
vertically), erasing part of the image, and
more. This makes sense because a rotated
image of a dog is still a dog. Common ML
frameworks like PyTorch and Keras both
have support for image augmentation.
According to Krizhevsky et al., in their
legendary AlexNet paper, “the transformed
images are generated in Python code on the
CPU while the GPU is training on the
previous batch of images. So these data
augmentation schemes are, in effect,



computationally free.3'”

In NLP, you can randomly replace a word
with a similar word, assuming that this
replacement wouldn’t change the meaning or
the sentiment of the sentence. Similar words
can be found either with a dictionary of
synonymous words, or by finding words
whose embeddings are close to each other in
a word embedding space.

Table 3-8. Three sentences generated
from an original sentence by replacing
a word with another word with similar
meaning.

Original sentences  I’m so happy to see you.

Generated sentences I’m so glad to see you.
I’m so happy to see y’all.
I’m very happy to see you.

This type of data augmentation is a quick way
to double, even triple your training data.

Perturbation



Perturbation is also a label-preserving
operation, but because sometimes, it’s used to
trick models into making wrong predictions, I
thought it deserves its own section.

Neural networks, in general, are sensitive to
noise. In the case of computer vision, this
means that by adding a small amount of noise
to an image can cause a neural network to
misclassify it. Su et al. showed that 67.97%
of the natural images in Kaggle CIFAR-10
test dataset and 16.04% of the ImageNet test
images can be misclassified by changing just
one pixel®? (See Figure 3-11).

Using deceptive data to trick a neural
network into making wrong predictions is
called adversarial attacks. Adding noise to
samples to create adversarial samples is a
common technique for adversarial attacks.
The success of adversarial attacks is
especially exaggerated as the resolution of
images increases.

Adding noisy samples to our training data can



help our models recognize the weak spots in
their learned decision boundary and improve
their performance3334. Noisy samples can be
created by either adding random noise or by
an efficient search strategy. Moosavi-
Dezfooli et al. proposed an algorithm, called
DeepFool, that finds the minimum possible
noise injection needed to cause a
misclassification with high confidence®®.
This type of augmentation is called

adversarial augmentation>®.

Adversarial augmentation is less common in
NLP (an image of a bear with randomly
added pixels still looks like a bear, but adding
random characters to a random sentence will
render it gibberish), but perturbation has been
used to make models more robust. One of the
most notable examples is BERT, where the
model chooses 15% of all tokens in each
sequence at random, and chooses to replace
10% of the chosen tokens with random
words. For example, given the sentence “my
dog is hairy” and the model randomly



replaces “hairy” with “apple”, the sentence
becomes “my dog is apple”. So 1.5% of all
tokens might result in nonsensical meaning.
Their ablation studies show that a small
fraction of random replacement gives their
model a small performance boost®’.

In chapter 5, we’ll go over how to use
perturbation not just as a way to improve
your model’s performance, but also a way to
evaluate its performance.
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Figure 3-11. Changing one pixel can cause a neural network
to make wrong predictions. Three models used are AllConv,
NiN, and VGG. The original labels made by those models
are in black, and the labels made after one pixel was
changed are below. Image by Su et al.

Data Synthesis

Since collecting data is expensive, slow, with
many potential privacy concerns, it’d be a
dream if we could sidestep it altogether and
train our models with synthesized data. Even
though we’re still far from being able to
synthesize all training data, it’s possible to
synthesize some training data to boost a
model’s performance.

In NLP, templates can be a cheap way to
bootstrap your model. One of the teams I
worked with used templates to bootstrap
training data for their conversational Al
(chatbot). A template might look like: “Find
me a [CUISINE] restaurant within
[NUMBER] miles of [LOCATION].” With
lists of all possible cuisines, reasonable
numbers (you would probably never want to



search for restaurants beyond 1000 miles),
and locations (home, office, landmarks, exact
addresses) for each city, you can generate
thousands of training queries from a template.

Table 3-9. Three sentences generated from a
template
Template Find me a [CUISINE] restaurant

within [NUMBER] miles of
[LOCATION].

Generated queries Find me a Vietnamese restaurant
within 2 miles of my office.
Find me a Thai restaurant within 5
miles of my home.
Find me a Mexican restaurant within
3 miles of Google headquarters.

In computer vision, a straightforward way to
synthesize new data is to combine existing
examples with discrete labels to generate
continuous labels. Consider a task of
classifying images with two possible labels:
DOG (encoded as 0) and CAT (encoded as
1). From example x; of label DOG and
example x, of label CAT, you can generate x



such as:
X =yxp+ (1 —y)xy

The label of x is a combination of the labels
of x; and x,: y * 0 + (1 —y) * 1. This method
is called mixup. The authors showed that
mixup improves models’ generalization,
reduces their memorization of corrupt labels,
increases their robustness to adversarial
examples, and stabilizes the training of
generative adversarial networks.®

Using neural networks to synthesize training
data is an exciting approach that is actively
being researched but not yet popular in
production. Sandfort et al. showed that by
adding images generated using a CycleGAN
to their original training data, they were able
to improve their model’s performance
significantly on CT segmentation tasks.>°

If you’re interested in learning more about
data augmentation for computer vision, A
survey on Image Data Augmentation for
Deep Learning (Connor Shorten & Taghi M.


https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

Khoshgoftaar, 2019) is a comprehensive
review.

Summary

Training data still forms the foundation of
modern ML algorithms. No matter how
clever your algorithms might be, if your
training data is bad, your algorithms won’t be
able to perform well. It’s worth it to invest
time and effort to curate and create training
data that will enable your algorithms to learn
something meaningful.

Once you’ve had your training data, you will
want to extract features from it to train your
ML models, which we will cover in the next
chapter.

1 Some readers might argue that this approach might
not work with large models, as certain large models
don’t work for small datasets but work well with a lot
more data. In this case, it’s still important to
experiment with datasets of different sizes to figure out
the effect of the dataset size on your model.
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Chapter 4. Feature
Engineering

A NOTE FOR EARLY RELEASE
READERS

With Early Release ebooks, you get
books in their earliest form—the author’s
raw and unedited content as they write—
so you can take advantage of these
technologies long before the official
release of these titles.

This will be the 4th chapter of the final
book. Please note that the GitHub repo
will be made active later on.

If you have comments about how we
might improve the content and/or
examples in this book, or if you notice
missing material within this chapter,



please reach out to the author at
chip@huyenchip.com.

In 2014, the paper Practical Lessons from
Predicting Clicks on Ads at Facebook
claimed that having the right features is the
most important thing in developing their ML
models. Since then, many of the companies
that I’ve worked with have discovered time
and time again that once they have a
workable model, having the right features
tends to give them the biggest performance
boost compared to clever algorithmic
techniques such as hyperparameter tuning.
State-of-the-art model architectures can still
perform poorly if they don’t use a good set of
features.

Due to its importance, a large part of many
ML engineering and data science jobs is to
come up with new useful features. In this
chapter, we will go over common techniques
and important considerations with respect to
feature engineering. We will dedicate a


https://research.fb.com/wp-content/uploads/2016/11/practical-lessons-from-predicting-clicks-on-ads-at-facebook.pdf

section to go into detail about a subtle yet
disastrous problem that has derailed many
ML systems in production: data leakage and
how to detect and avoid it.

We will end the chapter discussing how to
engineer good features, taking into account
both the feature importance and feature
generalization.

Learned Features vs.
Engineered Features

When I cover this topic in class, my students
frequently ask: “Why do we have to worry
about feature engineering? Doesn’t deep
learning promise us that we no longer have to
engineer features?”

They are right. The promise of deep learning
is that we won’t have to handcraft features.
For this reason, deep learning is sometimes
called feature learning??. Many features can
be automatically learned and extracted by



algorithms. However, we’re still far from the
point where all features can be automated.
Let’s go over an example to understand what
features can be automatically extracted and
what features still need to be handcrafted.

Imagine that you want to build a sentiment
analysis classifier to classify whether a
comment is spam or not. Before deep
learning, when given a piece of text, you
would have to manually apply classical text
processing techniques such as lemmatization,
expanding contraction, removing
punctuation, and lowercasing everything.
After that, you might want to split your text
into n-grams with n values of your choice.

As a refresher, an n-gram is a contiguous
sequence of n items from a given sample of
text. The items can be phonemes, syllables,
letters, or words. For example, given the post
“I like food”, its word-level 1-grams are [“I”,
“like”, “food”] and its word-level 2-grams are
[“I like”, “like food”]. This sentence’s set of
n-gram features, if we want n to be 1 and 2,



is: [“I”, “like”, “food”, “I like”, “like food™].

Figure 4-1 shows an example of classical text
processing techniques you can use to
handcraft n-gram features for your text.



Original tex | have a dog. He's sleeping.
f

Stopword removal | have dog. He's sleeping.
|
Lemmatization | have dog. He's sleep.
J
Contraction | have dog. He s sleep.
J
Punctuation  have dog He is sleep
'
Lowercase i have dog he is sleep
'
Tokenization I, have, dog, he, is, sleep
'
N-gram [i, have, dog, he, is, Sleep, i have,

have dog, dog he, he is, is sleep]



Figure 4-1. An example of techniques that you can use to
handcraft n-gram features for your text

Once you’ve generated n-grams for your
training data, you can create a vocabulary that
matches each n-gram to an index. Then you
can convert each post into a vector based on
its n-grams’ indices. For example, if we have
a vocabulary of 7 n-grams as shown in Table
4-1, each post can be a vector of 7 elements.
Each element corresponds to the number of
times the n-gram at that index appears in the
post. “I like food” will be encoded as the
vector [1, 1,0, 1, 1, 0, 1]. This vector can
then be inputted into an ML model such as
logistic regression.

Table 4-1. Example of an 1-gram and 2-gram
vocabulary

I like good
0 1 2

Feature engineering requires knowledge of
domain-specific techniques—in this case, the



domain in natural language processing (NLP)
—and tends to be repetitive and error-prone.
When I followed this method for one of my
early NLP projects, I kept having to restart
my process either because I had forgotten to
apply one technique or because one technique
I used turned out to be working poorly and I
had to undo it.

However, much of this pain has been
alleviated since the rise of deep learning.
Instead of having to worry about
lemmatization, punctuation, or stopword
removal, you can just split your raw text into
words, create a vocabulary out of those
words, and convert each of your words into
one-hot vectors using this vocabulary. Your
model will hopefully learn to extract useful
features from this. In this new method, much
of feature engineering for text has been
automated. Similar progress has been made
for images too. Instead of having to manually
extract features from raw images and input
those features into your ML, models, you can



just input raw images directly into your deep
learning models.

However, an ML system will likely need data
beyond just text and images. For example,
when detecting whether a comment is spam
or not, on top of the text in the comment
itself, you might want to use other
information about:

e the comment: such as who posted
this comment, how many
upvotes/downvotes it has.

e the user who posted this comment:
such as when this account was
created, how often they post, how
many upvotes/downvotes they have.

e the thread in which the comment was
posted: such as how many views it
has, because popular threads tend to
attract more spam.
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Figure 4-2. Some of the possible features about a comment, a
thread, or a user to be included in your model

There are so many possible features to use in
your model, some of them are shown in
Figure 4-2. The process of choosing what to
use and extracting the information you want
to use is feature engineering. For important
tasks such as recommending videos for users
to watch next on Tiktok, the number of
features used can go up to millions. For
domain-specific tasks such as predicting
whether a transaction is fraudulent, you might
need subject matter expertise with banking
and frauds to be able to extract useful
features.

Common Feature
Engineering Operations

Because of the importance and the ubiquity
of feature engineering in ML projects, there
have been many techniques developed to
streamline the process. In this section, we



will discuss several of the most important
operations that you should consider, if you
haven’t already, while engineering features
from your data. They include handling
missing values, scaling, discretization,
encoding categorical features, generating the
old-school but still very effective cross
features as well as the newer and exciting
positional features. This list is nowhere near
being comprehensive, but it does comprise
some of the most common and useful
operations to give you a good starting point.
Let’s dive in!

Handling Missing Values

One of the first things you might notice when
dealing with data in production is that some
values are missing. However, one thing that
many ML engineers I’ve interviewed don’t
know is that not all types of missing values
are equal®. To illustrate this point, consider
the task of predicting whether someone is
going to buy a house in the next 12 months.



A portion of the data we have is in Table 4-2.

Table 4-2. A portion of the data we have for
the task of predicting whether someone will
buy a house in the next 12 months

ID Age Gender
1 A
2 27 B
3 A
4 40 B
5 35 B
6 A
7 33 B
8 20 B

There are three types of missing values. The
official names for these types are a little bit
confusing so we’ll go into detailed examples
to mitigate the confusion.

1. Missing not at random (MNAR):
when the reason a value is missing is
because of the value itself. In this



example, we might notice that male
respondents with higher income tend
not to disclose their income. The
income values are missing for
reasons related to the values
themselves.

. Missing at random (MAR): when the
reason a value is missing is not due
to the value itself, but due to another
observed variable. In this example,
we might notice that age values are
often missing for respondents of the
gender “A”, which might be because
the people of gender A in this survey
don’t like disclosing their age.

. Missing completely at random
(MCAR): when there’s no pattern in
when the value is missing. In this
example, we might think that the
missing values for the column “Job”
might be completely random, not
because of the job itself and not
because of another variable. People



just forget to fill in that value
sometimes for no particular reason.
However, this type of missing is
very rare. There are usually reasons
why certain values are missing, and
you should investigate.

When encountering missing values, you can
either fill in the missing values with certain
values, (imputation), or remove the missing
values (deletion). We’ll go over both.

Deletion

The candidates who I’ve talked to tend to
prefer deletion, not because it’s a better
method, but because it’s easier to do.

One way to delete is column deletion: if a
variable has too many missing values, just
remove that variable. For example, in the
example above, over 50% of the values for
the variable “Marital status” are missing, so
you might be tempted to remove this variable
from your model. The drawback of this



approach is that you might remove important
information and reduce the accuracy of your
model. Marital status might be highly
correlated to buying houses, as married
couples are much more likely to be
homeowners than single people®.

Another way to delete is row deletion: if an
example has missing value(s), just remove
that example from the data. This method can
work when the missing values are completely
at random (MCAR) and the number of
examples with missing values is small, such
as less than 0.1%. You don’t want to do row
deletion if that means 10% of your data
examples are removed.

However, removing rows of data can also
remove important information that your
model needs to make predictions, especially
if the missing values are not at random
(MNAR). For example, you don’t want to
remove examples of male respondents with
missing income because whether income is
missing is information itself (missing income



might mean higher income, and thus, more
correlated to buying a house) and can be used
to make predictions.

On top of that, removing rows of data can
create biases in your model, especially if the
missing values are at random (MAR). For
example, if you remove all examples missing
age values in the data in Table 4-2; you will
remove all respondents with gender A from
your data, and your model won’t be able to
make predictions for respondents with gender
A.

Imputation

Even though deletion is tempting because it’s
easy to do, deleting data can lead to losing
important information or cause your model to
be biased. If you don’t want to delete missing
values, you will have to impute them, which
means “fill them with certain values.”
Deciding which “certain values” to use is the
hard part.

One common practice is to fill in missing



values with their defaults. For example, if the
number of children is missing, you might fill
it with 0. If the job is missing, you might fill
it with an empty string “”. This approach
works well in many cases, but sometimes, it
can cause hair-splitting bugs. One time, in
one of the projects I was helping with, we
discovered that the model was spitting out
garbage because the app’s front-end no
longer asked users to enter their age, so age
values were missing, and the model filled
them with 0. But the model never saw the age
value of 0 during, so it couldn’t make
reasonable predictions.

Another common practice is to fill in missing
values with the mean, median, or most
common value. For example, if the
temperature value is missing for a data
example whose month value is July, it’s not a
bad idea to fill it with the median temperature
of July.

But what if the value isn’t numerical and you
can’t calculate its mean or median? If your



values are categorical, you can give each of
the categories a numerical value, then
calculate the mean or median of those
numerical values.

Multiple techniques might be used at the
same time or in sequence to handle missing
values for a particular set of data. Regardless
of what techniques you use, one thing is
certain: there is no perfect way to handle
missing values. With deletion, you risk losing
important information or accentuating biases.
With imputation, you risk adding noise to
your data, or worse, data leakage. If you
don’t know what data leakage is, don’t panic,
we’ll cover it in the Data Leakage section of
this chapter.

Scaling

Consider the task of predicting whether
someone will buy a house in the next 12
months, and the data is shown in Table 4-2.
The values of the variable Age in our data go
between 20 and 40, whereas the values of the



variable Annual Income go between 10,000
and 150,000. When we input these two
variables into an ML model, it won’t
understand that 150,000 and 40 represent
different things. It will just see them both as
numbers, and because the number 150,000 is
much bigger than 40, it might give it more
importance, regardless of which variable is
actually more useful for the predicting task.

During data processing, it’s important to
scale your features so that they’re in similar
ranges. This process is called feature scaling.
This is one of the simplest things you can do
to give your model a performance boost.
Neglecting to do so can cause your model to
make gibberish predictions, especially with
classical algorithms like gradient-boosted

trees and logistic regression®.

An intuitive way to scale your features is to
get each feature to be in the range [0, 1].
Given a variable x, its values can be rescaled
to be in this range using the following
formula.



x — min(x)

7a = max(z) — min(x)

You can validate that if x is the maximum
value, the scaled value x’ will be 1. If x is the
minimum value, the scaled value x’ will be 0.

If you want your feature to be in an arbitrary
range [a, b] — empirically, I find the range
[-1, 1] to work better than the range [0, 1] —
you can use the following formula.

(x — min(x))(b — a)

rxa=a-+
max (x) — min(z)

Scaling to an arbitrary range works well
when you don’t want to make any
assumptions about your variables. If you
think that your variables might follow a
normal distribution, it might be helpful to
normalize them so that they have zero-mean
and unit variance. This process is called
standardization.



r—T

ra =
o

with Z being the mean of variable x, and o
being its standard deviation.

There are two important things to note about
scaling. One is that it’s a common source of
data leakage, (this will be covered in greater
detail in the Data Leakage section). Another
is that it often requires global statistics — you
have to look at the entire or a subset of
training data to calculate its min, max, or
mean. During inference, you reuse the
statistics you had obtained during training to
scale new data. If the new data has changed
significantly compared to the training, these
statistics won’t be very useful. Therefore, it’s
important to retrain your model often to
account for these changes. We’ll discuss
more on how to handle changing data in
production in the section on continual
learning in Chapter 7.



Discretization

Imagine that we’ve built a model with the
data in Table 4-2. During training, our model
has seen the annual income values of 150000,
50000, 100000, 50000, 60000, and 10000.
During inference, our model encounters an
example with an annual income of 9000.50.

Intuitively, we know that $9000.50 a year
isn’t much different from $10,000/year, and
we want our model to treat both of them the
same way. But the model doesn’t know that.
Our model only knows that 9000.50 is
different from 10000, and will treat them
differently.

Discretization is the process of turning a
continuous feature into a discrete feature.
This process is also known as quantization.
This is done by creating buckets for the given
values. For annual income, you might want to
group them into three buckets as follows.

e [.ower income: less than
$35,000/year



e Middle income: between $35,000
and $100,000/year

e Upper income: more than
$100,000/year

Now, instead of having to learn an infinite
number of possible incomes, our model can
focus on learning only three categories,
which is a much easier task to learn.

Even though by definition, it’s used for
continuous features, the same technique can
be used for discrete features too. The age
variable is discrete, it might still be useful to
group them into buckets such as follows.

e [.essthan 18
Between 18 and 22

Between 22 and 30

Between 30 - 40

Between 40 - 65
Over 65



A question with this technique is how to best
choose the boundaries of categories. You can
try to plot the histograms of the values and
choose the boundaries that make sense. In
general, common sense, basic quantiles, and
sometimes subject matter expertise can get
you a long way.

Encoding Categorical Features

We’ve talked about how to turn continuous
features into categorical features. In this
section, we’ll discuss how to best handle
categorical features.

People who haven’t worked with data in
production tend to assume that categories are
static, which means the categories don’t
change over time. This is true for many
categories. For example, age brackets and
income brackets are unlikely to change and
you know exactly how many categories there
are in advance. Handling these categories is
straightforward. You can just give each
category a number and you’re done.



However, in production, categories change.
Imagine you’re building a recommendation
system to predict what products users might
want to buy for Amazon. One of the features
you want to use is the product brand. When
looking at Amazon’s historical data, you
realize that there are a lot of brands. Even
back in 2019, there were already over 2
million brands on Amazon®!

The number of brands is overwhelming but
you think: “I can still handle this.” You
encode each brand a number, so now you
have 2 million numbers from 0 to 1,999,999
corresponding to 2 million brands. Your
model does spectacularly on the historical test
set, and you get approval to test it on 1% of
today’s traffic.

In production, your model crashes because it
encounters a brand it hasn’t seen before and
therefore can’t encode. New brands join
Amazon all the time. You create a category
“UNKNOWN?” with the value of 2,000,000 to



catch all the brands your model hasn’t seen
during training.

Your model doesn’t crash anymore but your
sellers complain that their new brands are not
getting any traffic. It’s because your model
didn’t see the category UNKNOWN in the
train set, so it just doesn’t recommend any
product of the UNKNOWN brand. Then you
fix this by encoding only the top 99% most
popular brands and encode the bottom 1%
brand as UNKNOWN. This way, at least
your model knows how to deal with
UNKNOWN brands.

Y our model seems to work fine for about 1
hour, then the click rate on recommended
products plummets. Over the last hour, 20
new brands joined your site, some of them
are new luxury brands, some of them are
sketchy knockoff brands, some of them are
established brands. However, your model
treats them all the same way it treats
unpopular brands in the training set.



This isn’t an extreme example that only
happens if you work at Amazon on this task.
This problem happens quite a lot. For
example, if you want to predict whether a
comment is spam, you might want to use the
account that posted this comment as a feature,
and new accounts are being created all the
time. The same goes for new product types,
new website domains, new restaurants, new
companies, new IP addresses, and so on. If
you work with any of them, you’ll have to
deal with this problem.

Finding a way to solve this problem turns out
to be surprisingly difficult. You don’t want to
put them into a set of buckets because it can
be really hard—how would you even go
about putting new user accounts into different
groups?

One solution to this problem is the hashing
trick, popularized by the package Vowpal
Wabbit developed at Microsoft’. The gist of
this trick is that you use a hash function to
generate a hashed value of each category. The



hashed value will become the index of that
category. Because you can specify the hash
space, you can fix the number of encoded
values for a feature in advance, without
having to know how many categories there
will be. For example, if you choose a hash
space of 18 bits, which corresponds to 218 =
262,144 possible hashed values, all the
categories, even the ones that your model has
never seen before, will be encoded by an
index between 0 and 262, 143.

One problem with hashed functions is
collision: two categories being assigned the
same index. However, with many hash
functions, the collisions are random, new
brands can share index with any of the old
brands instead of always sharing index with
unpopular brands, which is what happens
when we use the UNKNOWN category
above. The impact of colliding hashed
features is, fortunately, not that bad. In a
research done by Booking.com, even for 50%
colliding features, the performance lost is less



than half percent, as shown in Figure 4-3.
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Figure 4-3. 50% collision rate only causes the log loss to
increase less than half a percent. Image by Lucas Bernardi.

You can choose a hash space large enough to
reduce the collision. You can also choose a
hash function with properties that you want,
such as a locality-sensitive hashing function
where similar categories (such as websites
with similar names) are hashed into values
close to each other.

Because it’s a trick, it’s often considered
hacky by academics and excluded from ML
curricula. But its wide adoption in the
industry is a testimonial to how effective the
trick is. It’s essential to Vowpal Wabbit and
it’s part of the frameworks scikit-learn,
TensorFlow, and gensim. It can be especially
useful in continual learning settings where
your model learns from incoming examples
in production. We’ll cover continual learning
in Chapter [TODO].

Feature Crossing


https://booking.ai/dont-be-tricked-by-the-hashing-trick-192a6aae3087

Feature crossing is the technique to combine
two or more features to generate new
features. This technique is useful to model the
non-linear relationships between features. For
example, for the task of predicting whether
someone will want to buy a house in the next
12 months, you suspect that there might be a
non-linear relationship between marital status
and number of children, so you combine them
to create a new feature “marriage and
children” as in Table 4-3.

Table 4-3. Example of how two features can
be combined to create a new feature

Marriage Single Married
Children 0 2
Marriage & Single, 0 Married, 2
children

Because feature crossing helps model non-
linear relationships between variables, it’s
essential for models that can’t learn or are
bad at learning non-linear relationships, such



as linear regression, logistic regression, and
tree-based models. It’s less important in
neural networks, but can still be useful
because explicit feature crossing occasionally
helps neural networks learn non-linear
relationships faster.

A caveat of feature crossing is that it can
make your feature space blow up. Imagine
feature A has 100 possible values and feature
B has 100 possible features, crossing these
two features will result in a feature with 100
x 100 = 10,000 possible values. You will
need a lot more data for models to learn all
these possible values. Another caveat is that
because feature crossing increases the
number of features models use, it can make
models overfit to the training data.

Discrete and Continuous
Positional Embeddings

First introduced to the deep learning
community in the paper Attention Is All You


https://arxiv.org/abs/1706.03762

Need (Vaswani et al., 2017), positional
embedding has become a standard data
engineering technique for many applications
in both computer vision and natural language
processing. We’ll walk through an example
to show why positional embedding is
necessary and how to do it.

Consider the task of language modeling
where you want to predict the next token
based on the previous sequence of tokens. In
practice, a token can be a word, a character,
or a subword, and a sequence length can be
up to 512 if not larger. However, for
simplicity, let’s use words as our tokens and
use the sequence length of 8. Given an
arbitrary sequence of 8 words, such as,
“Sometimes all I really want to do is”, we
want to predict the next word.

If we use a recurrent neural network, it will
process words in sequential order, which
means the order of words is implicitly
inputted. However, if we use a model like a
transformer, words are processed in parallel,



so words’ positions need to be explicitly
inputted so that our model knows which word
follows which word (“a dog bites a child” is
very different from “a child bites a dog”). We
don’t want to input the absolute positions: 0,
1, 2, ..., 7 into our model because
empirically, neural networks don’t work well
with inputs that aren’t unit-variance (that’s
why we scale our features, as discussed
previously in the section Scaling).

If we rescale the positions to between 0 and
1,s00,1, 2, ..., 7 become 0, 0.143, 0.286,
..., 1, the differences between the two
positions will be too small for neural
networks to learn to differentiate.

A way to handle position embeddings is to
treat it the way we’d treat word embedding.
With word embedding, we use an embedding
matrix with the vocabulary size as its number
of columns, and each column is the
embedding for the word at the index of that
column. With position embedding, the
number of columns is the number of



positions. In our case, since we only work
with the previous sequence size of 8, the
positions go from 0 to 7 (see Figure 4-4).

The embedding size for positions is usually
the same as the embedding size for words so
that they can be summed. For example, the
embedding for the word “food” at position 0
is the sum of the embedding vector for the
word “food” and the embedding vector for
position 0. This is the way position
embeddings are implemented in
HuggingFace’s BERT as of August 2021.
Because the embeddings change as the model
weights get updated, we say that the position
embeddings are learned.
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Figure 4-4. One way to embed positions is to treat them the
way you’d treat word embeddings

Position embeddings can also be fixed. The
embedding for each position is still a vector
with S elements (S is the position embedding
size), but each element is predefined using a
function, usually sine and cosine. In the
original Transformer paper, if the element is
at an even index, use sine. Else, use cosine.
See Figure 4-5.
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Figure 4-5. Example of fixed position embedding. H is the
dimension of the outputs produced by the model.

Fixed positional embedding is a special case
of what is known as Fourier features. If
positions in positional embeddings are
discrete, Fourier features can also be
continuous. Consider the task involving
representations of 3D objects, such as a
teapot. Each position on the surface of the
teapot is represented by a 3-dimensional
coordinate, which is continuous. When
positions are continuous, it’d be very hard to
build an embedding matrix with continuous
column indices, but fixed position
embeddings using sine and cosine functions
still work.

This is the generalized format for the
embedding vector at coordinate v, also called
the Fourier features of coordinate v. Fourier
features have been shown to improve models
performance for tasks that take in coordinates
(or positions) as inputs.8
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Data Leakage

One pattern of failures that I’ve encountered
often in production is when models perform
beautifully on the test set, but fail
mysteriously in production. The cause, after a
long and painful investigation, is data
leakage.

Data leakage refers to the phenomenon when
a form of the label “leaks” into the set of
features used for making predictions, and this
same information is not available during
inference.

Data leakage is subtle because often, the
leakage is non-obvious. It’s dangerous
because it can cause your models to fail in an
unexpected and spectacular way, even after
extensive evaluation and testing. Let’s go
over an example to demonstrate what data
leakage is.



Suppose you want to build an ML model to
predict whether a CT scan of a lung shows
signs of cancer. You obtained the data from
hospital A, removed the doctors’ diagnosis
from the data, and trained your model. It did
really well on the test data from hospital A,
but poorly on the data from hospital B.

After extensive investigation, you learned
that at hospital A, when doctors think that a
patient has lung cancer, they send that patient
to a more advanced scan machine, which
outputs slightly different CT scan images.
Your model learned to rely on the
information on the scan machine used to
make predictions on whether a scan image
shows signs of lung cancer. Hospital B sends
the patients to different CT scan machines at
random, so your model has no information to
rely on. We say that labels are leaked into the
features during training.

Data leakage can happen not only with
newcomers to the field, but has also happened
to several experienced researchers whose



work I admire, and in one of my own
projects. Despite its prevalence, data leakage
is rarely covered in ML curricula.

CAUTIONARY TALE: DATA
LEAKAGE WITH KAGGLE
COMPETITION

In 2020, University of Liverpool
launched an Ion Switching competition
on Kaggle. The task was to identify the
number of ion channels open at each time
point. They synthesized test data from
train data, and some people were able to
reverse engineer and obtain test labels
from the leak®. The two winning teams in
this competition are the two teams that
were able to exploit the leak, though they
might have still been able to win without
exploiting the leak'®.

Common Causes for Data
Leakage


https://www.kaggle.com/c/liverpool-ion-switching/overview

In this section, we’ll go over some common
causes for data leakage and how to avoid
them.

1. Splitting time-correlated data
randomly instead of by time

When I learned ML in college, I was
taught to randomly split my data into
train, validation, and test splits. This
is also how data is often split in
many ML research papers. However,
this is also one common cause for
data leakage.

In many cases, data is time-
correlated, which means that the
time the data is generated affects
how it should be labeled.
Sometimes, the correlation is
obvious, as in the case of stock
prices. To oversimplify it, the prices
of many stocks tend to go up and
down together. If 90% of the stocks
go down today, it’s very likely the



other 10% of the stocks go down too.
When building models to predict the
future stock prices, you want to split
your training data by time, such as
training your model on data from the
first 6 days and evaluating it on data
from the 7th day. If you randomly
split your data, prices from the 7th
day will be included in your train
split and leak into your model the
condition of the market on that day.
We say that the information from the
future is leaked into the training
process.

However, in many cases, the
correlation is non-obvious but it’s
still there. Consider the task of
predicting whether someone will
click on a song commendation.
Whether someone will listen to a
song depends not only on their taste
in music but also on the general
music trend that day. If an artist



passes away one day, people will be
much more likely to listen to that
artist. By including examples from
that day into the train split,
information about the music trend
that day will be passed into your
model, making it easier for it to
make predictions on other examples
on that day.

To prevent future information from
leaking into the training process and
allowing models to cheat during
evaluation on the test split, split your
training data by time when you can,
instead of random splitting. For
example, if you have data from 5
weeks, use the first 4 weeks for the
train split, then randomly split week
5 into validation and test splits as
shown in Figure 4-6.






Figure 4-6. Split data by time to prevent future
information from leaking into the training
process

2. Scaling before splitting

As discussed in the Scaling section
in this chapter, it’s important to scale
your features. Scaling requires
global statistics about your data,
such as the mean of your data. One
common mistake is to use the entire
training data to generate global
statistics before splitting it into
different splits, leaking the mean of
the test examples into the training
process, allowing a model to adjust
to the mean of the future examples.
This information isn’t available in
production so the model’s
performance will likely degrade.

To avoid this type of leakage, always
split your data first before scaling,
then use the statistics from the train
split to scale all the splits.



3. Filling in missing data with statistics
from the test split

One common way to handle the
missing values of a feature is to fill
them with the mean or median of all
values present. Leakage might occur
if the mean or median is calculated
using entire data instead of just the
train split. This type of leakage is
similar to the type of leakage above,
and can be prevented by using only
statistics from the train split to fill in
missing values in all the splits.

4. Poor handling of data duplication
before splitting

Data duplication is quite common. It
can happen because the data handed
to you has duplication in it!!, which
likely results from data collection or
merging of different data sources. It
can also happen because of data
processing — for example,



oversampling might result in
duplicating certain examples. If you
fail to remove duplicates before
splitting your data into different
splits, the same examples might
appear in both the train and the
validation/test splits. To avoid this,
first, always check for duplicates
before splitting and also after
splitting just to make sure. If you
oversample your data, do it only
after splitting.

. Group leakage

A group of examples have strongly
correlated labels but are divided into
different splits. For example, a
patient might have two lung CT
scans that are a week apart, which
likely have the same labels on
whether they contain signs of lung
cancer, but one of them is in the train
split and the third is in the test split.
To avoid this type of data leakage,



an understanding of your data is
essential.

. Leakage from data collection process

The example above about how
information on whether a CT scan
shows signs of lung cancer is leaked
via the scan machine is an example
of this type of leakage. Detecting
this type of data leakage requires a
deep understanding of the way data
is collected and occasionally, subject
matter expertise in the task. For
example, it would be very hard to
figure out that the model’s poor
performance in hospital B is due to
its different scan machine procedure
if you don’t know about different
scan machines or that the procedures
at the two hospitals are different.

There’s no foolproof way to avoid
this type of leakage, but you can
mitigate the risk by keeping track of



the sources of your data, and
understanding how it is collected and
processed. Normalize your data so
that data from different sources can
have the same means and variances.
If different CT scan machines output
images with different resolutions,
normalizing all the images to have
the same resolution would make it
harder for models to know which
image is from which scan machine.

Detecting Data Leakage

Data leakage can happen during many steps,
from collecting, sampling, splitting,
processing data to feature engineering. It’s
important to monitor for data leakage during
the entire lifecycle of an ML project.

Measure how each feature or a set of features
are correlated to the target variable. If a
feature has unusually high correlation,
investigate how this feature is generated and
whether the correlation makes sense. It’s



possible that two features independently
don’t contain leakage, but two features
together can contain leakage. For example,
the starting date and the end date separately
doesn’t tell us anything about how long
someone is at a company, but both together
can give us that information.

Do ablation studies to measure how important
a feature or a set of features is to your model.
If removing a feature causes the model’s
performance to deteriorate significantly,
investigate why that feature is so important. If
you have a massive amount of features, say a
million features, it might be infeasible to do
ablation studies on every possible
combination of them, but it can still be useful
to occasionally do ablation studies with a
subset of features that you suspect the most.
This is another example why subject matter
expertise can come in handy in feature
engineering. Ablation studies can be run
offline at your own schedule, so you can
leverage your machines during down time for



this purpose.

Keep an eye out for new features added to
your model. If adding a new feature
significantly improves your model’s
performance, either that feature is really good
or that feature just contains leaked
information about labels.

Be very careful every time you look at the
test split. If you use the test split in any way
other than to report a model’s final
performance, whether to come up with ideas
for new features or to tune hyperparameters,
you risk leaking information from the future
into your training process.

Engineering Good Features

Generally, adding more features leads to
better model performance. In my experience,
the list of features used for a model in
production only grows over time. However,
more features doesn’t always mean better



model performance. Having too many
features can be bad for your model for the
following reasons.

1. The more features you have, the
more opportunities there are for data
leakage.

2. Too many features can cause
overfitting.

3. Useless features become technical
debts. Whenever your data pipeline
changes, all the affected features
need to be adjusted accordingly. For
example, if one day your application
decides to no longer take in
information about users’ age, all
features that use users’ age need to
be updated.

In theory, if a feature doesn’t contribute to
help a model make good predictions,
regularization techniques like L.1
regularization should reduce that feature’s



weight to 0. However, in practice, it might
help models learn faster if the features that
are no longer useful (and even possibly
harmful) are removed, prioritizing good
features.

You can store removed features to add them
back later. You can also just store general
features to reuse and share across teams in an
organization. A service that helps you
manage, store, and automate your feature
engineer pipeline is called a Feature Store.

There are two factors you might want to
consider when evaluating whether a feature is
good for a model: importance to the model
and generalization to unseen data.

Feature Importance

There are many different methods for
measuring a feature’s importance. Two of the
popular ones are Boosted Feature
Importances for boosted gradient trees and
SHAP (SHapley Additive exPlanations) for



general models'?. Their exact algorithms are
complex, but intuitively, a feature’s
importance to a model is measured by how
much that model’s performance deteriorates
if that feature or a set of features containing
that feature is removed from the model.
SHAP is great because not only it measures a
feature’s importance to an entire model, it
also measures each feature’s contribution to a
model’s specific prediction. Figure 4-7 and
Figure 4-8 show how SHAP can help you
understand the contribution of each feature to
a model’s predictions.
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Figure 4-7. How much each feature contributes to a model’s
single prediction, measured by SHAP. The value LSTAT=4
contributes the most to this specific prediction. Image by
Scott Lundberg from the GitHub repository
github.com/slundberg/shap.
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Figure 4-8. How much each feature contributes to a model,
measured by SHAP. The feature LSTAT has the highest
importance. Image by Scott Lundberg from the GitHub

repository github.com/slundberg/shap.

Often, a small number of features accounts
for a large portion of your model’s feature
importance. When using Boosted Feature
Importance for a click-through rate prediction
model, the ads team at Facebook found out
that the top 10 features are responsible for
about half of the model’s total feature
importance, while the last 300 features
contribute less than 1% feature

Importance, as shown in Figure 4-913,
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Figure 4-9. Boosting Feature Importance. X-axis
corresponds to the number of features. Feature importance
is in log scale. Image by He et al.

Not only good for choosing the right features,
feature importance techniques are also great
for interpretability as they help you
understand how your models work under the
hood. We will discuss more about
Interpretability in Chapter [TODO].

Feature Generalization

Since the goal of an ML model is to make
correct predictions on unseen data, features
used for the model should be generalizable to
unseen data. Not all features generalize
equally. For example, for the task of
predicting whether a comment is spam, the
identifier of each comment is not
generalizable at all and shouldn’t be used as a
feature for the model. However, the identifier
of the user who posts the comment, such as
username, might still be useful for a model to
make predictions.



Measuring feature generalization is a lot less
scientific than measuring feature importance,
and requires more intuition and subject matter
expertise than statistical knowledge. Overall,
there are two aspects you might want to
consider with regards to generalization:
feature coverage and distribution of feature
values.

Coverage is the percentage of the examples
that has values for this feature in the data. A
rough rule of thumb is that if this feature
appears in a very small percentage of your
data, it’s not going to be very useful. For
example, if you want to build a model to
predict whether someone will buy a house in
the next 12 months and you think that the
number of children someone has will be a
good feature, but you can only get this
information for 1% of your data, this feature
might not be very useful.

This rule of thumb is rough because some
features can still be useful even if they are
missing in most of your data. This is



especially useful if the missing values are not
at random, which means having the feature or
not might be a strong indication of its value).
For example, if a feature appears only in 1%
of your data, but 99% of the examples with
this feature have POSITIVE labels, this
feature is very useful and you should use it.

Coverage of a feature can differ wildly
between different slices of data and in the
same slice of data over time. If the coverage
of a feature differs a lot between the train and
test split (such as it appears in 90% of the
examples in the train split but only in 20% of
the examples in the test split), this is an
indication that your train and test splits don’t
come from the same distribution. You might
want to investigate whether the way you split
your data makes sense and whether this
feature is a cause for data leakage.

For the feature values that are present, you
might want to look into their distribution. If
the set of values that appears in the seen data
(such as the train split) has no overlap with



the set of values that appears in the unseen
data (such as the test split), this feature might
even hurt your model’s performance.

As a concrete example, imagine you want to
build a model to estimate the time it will take
for a given taxi ride. You retrain this model
every week, and you want to use the data
from the last 6 days to predict the ETAs* for
today. One of the features is
DAY_OF_THE_WEEK, which you think is
useful because the traffic on weekdays is
usually worse than on the weekend. This
feature coverage is 100%, because it’s
present in every feature. However, in the train
split, the values for this feature are Monday
to Saturday, while in the test split, the value
for this feature is Sunday. If you include this
feature in your model, it won’t generalize to
the test split, and might harm your model’s
performance.

On the other hand, HOUR_OF_THE_DAY is
a great feature, because the time in the day
affects the traffic too, and the range of values



for this feature in the train split overlaps with
the test split 100%.

When considering a feature’s generalization,
there’s a tradeoff between generalization and
specificity. You might realize that the traffic
during an hour only changes depending on
whether that hour is the rush hour. So you
generate the feature IS_RUSH_HOUR and
set it to 1 if the hour is between 7am and 9am
or between 4pm and 6pm. IS_RUSH_HOUR
is more generalizable but less specific than
HOUR_OF_THE_DAY. Using
IS_RUSH_HOUR without
HOUR_OF_THE_DAY might cause models
to lose important information about the hour.

Summary

Because the success of today’s ML systems
still depend on their features, it’s important
for organizations interested in using ML in
production to invest time and effort into
feature engineering.



How to engineer good features is a complex
question with no fool-proof answers. The best
way to learn is through experience: trying out
different features and observing how they
affect your models’ performance. It’s also
possible to learn from experts. I find it
extremely useful to read about how the
winning teams of Kaggle competitions
engineer their features to learn more about
their techniques and the considerations they
went through.

Feature engineering often involves subject
matter expertise, and subject matter experts
might not always be engineers, so it’s
important to design your workflow in a way
that allows non-engineers to contribute to the
process.

Here is a summary of best practices for
feature engineering.

e Split data by time into train/valid/test
spits instead of doing it randomly.

e If you oversample your data, do it



after splitting.

e Scale and normalize your data to
avoid data leakage.

e Use statistics from only the train
split, instead of the entire data, to
scale your features and handle
missing values.

e Understand how your data is
collected and processed, and keep
track of its lineage.

e Understand feature importance to
your model.

e Use features that generalize well.

e Remove no longer useful features
from your models.

With a set of good features, we’ll move to the
next part of the workflow: training ML
models. Before we move on, I just want to
reiterate that moving to modeling doesn’t
mean we’re done with handling data or



feature engineering. We are never done with
data and features. In most real-world ML
projects, the process of collecting data and
feature engineering goes on as long as your
models are in production. We need to use
new, incoming data to continually improve
models. We’ll cover continual learning in
Chapter [TODO].

1 Handcrafted vs. non-handcrafted features for
computer vision classification (Nanni et al., 2017)

2 Feature learning (Wikipedia)

3 In my experience, how well a person handles missing
values for a given dataset during interviews strongly
correlates with how well they will do in their day to
day job.

4 3 FACTS ABOUT MARRIAGE AND
HOMEOWNERSHIP (Rachel Bogardus Drew, Joint
Center for Housing Studies at Harvard University
2014)

5 Feature scaling once boosted my model’s
performance by almost 10%.

6 Jun 11, 2019 Two Million Brands on Amazon
(Marketplace Pulse)

7 Feature hashing (Wikipedia)
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Chapter 5. Model
Development

A NOTE FOR EARLY RELEASE
READERS

With Early Release ebooks, you get
books in their earliest form—the author’s
raw and unedited content as they write—
so you can take advantage of these
technologies long before the official
release of these titles.

This will be the 5th chapter of the final
book. Please note that the GitHub repo
will be made active later on.

If you have comments about how we
might improve the content and/or
examples in this book, or if you notice
missing material within this chapter,



please reach out to the author at
chip@huyenchip.com.

Now that we’ve walked through training data
and an initial set of features, we can move to
the ML part of machine learning systems.
Many ML engineers consider the fun part.
This is when you can see your data being
transformed into intelligent systems and play
around with their predictions.

I expect that most readers already have an
understanding of common ML algorithms
such as decision trees, K-nearest neighbors,
and different types of neural networks. This
chapter will discuss techniques surrounding
algorithms but won’t explain these
algorithms. Because this chapter deals with
ML algorithms, it requires a lot more ML
knowledge than other chapters. If you’re not
familiar with them, I recommend taking an
online course or reading a book on ML,
algorithms before reading this chapter.

In this chapter, we’ll first discuss how to



select the best model for your problem. We
discuss how to select a model, out of many
possible ML models, for your problem. Once
we have our model, we’ll discuss how to train
it, covering distributed training and
experiment tracking. We’ll end the chapter
with how to evaluate the trained models.

Model Selection

There are many possible solutions to any
given problem, both ML solutions and non-
ML solutions. You might wonder what
solutions are best for your problem. Should
you start with the good old logistic
regression? You’ve heard of a fancy new
model that is supposed to be the new state-of-
the-art for your problem, should you spend
two weeks learning that process then three
months implementing it? Should you try an
ensemble of various decision trees?

If you had unlimited time and compute
power, the rational thing to do would be to try



all possible solutions and see what is best for
you. However, time and compute power are
limited resources, and you have to be
strategic about what models we select.

In this section, we’ll start with a basic ML
review then cover three topics: choosing a
model for your problem, creating ensembles
of multiple models for your problem, and
then using ML to automatically choose a
model best for your problem.

Before we get into the details of model
selection, let’s take a step back and review
what a model consists of, and what to select
when we say “model selection”. If you’re
already familiar with different types of ML
algorithms and model selection, you might
want to go to the next section Choosing ML
Models.

Basic ML Review

A model is a function that transforms inputs
into outputs, which can then be used to make



predictions. For example, a binary text
classification model might take sentences as
inputs and output values between 0 and 1.
You can use these output values to make
predictions, such as if the value is less than
0.5, output the NEGATIVE class, and if the
value is greater than or equal to 0.5, output
the POSITIVE class.

In traditional programming, functions are
given and outputs are calculated from given
inputs. For example, your function f(x) might
be given as: f(x) = 2x + 3. Given x = 1, the
output will be f(1) =2 * 1+ 3 =5. Given x =
3, the output will be f(3) =2 *3+3=09.

In supervised ML, the inputs and outputs are
given, which are called data, and the function
is derived from data. Given x as input and y
as output, you want to learn a function f such
that applying f on x will produce y. However,
ML isn’t powerful enough to derive arbitrary
functions from data yet, so you still need to
specify the form that you think the function
should takel. It can be a linear function, a



decision tree, a feedforward neural network
with two hidden layers, each with 768
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For example, given a dataset with only two
examples (x=1,y=5)and (x =3,y =9),
you might specify that the function is a linear
function, which means that it takes the form
f(x) = wx + b. Then you learn the values of w
and b to fit this dataset. Because w and b are
learned during the training process, they are
called parameters.

For each type of model, there are many
possible values for the parameters. You need
an objective function to evaluate how good a
given set of parameters is for a dataset, and a
procedure to derive the set of parameters best
suited for the given data according to that
objective, known as a learning procedure.

Some readers might wonder if the above
paragraph about parameters still applies
to non-parametric models such as K-



means clustering and decision trees.
Being non-parametric doesn’t mean that
models don’t use parameters. In a
parametric model, the number of
parameters is fixed with respect to the
sample size. In a nonparametric model,
the effective number of parameters can
grow with the sample size. So the
complexity of the function underlying a
neural network remains the same even if
the amount of data grows. But the
complexity of the function underlying a
decision tree grows as its number of
nodes grows.

When talking about model selection, most
people think about selecting a function form.
However, choosing the right objective
function and a learning procedure is
extremely important in finding a good set of
parameters for your model.

Objective Function



The objective function, also known as the
loss function, is highly dependent on the
model type and whether the labels are
available. If the labels aren’t available, as in
the case of unsupervised learning, the
objective functions depend on the data points
themselves. For example, for k-means
clustering, the objective function is the
variance within data points in the same
cluster (so the objective is to put data points
into clusters so that the within-cluster
variance is minimized). But unsupervised
learning is much less commonly used in
production.

Most algorithms you’ll encounter in
production are supervised or some form of
weakly or semi-supervised, as mentioned in
Chapter 3. Given a set of parameter values,
you calculate the outputs from the given
inputs, and compare the given function’s
predicted outputs (y’) to the actual outputs
(). Objective functions evaluate how good a
set of parameter values is by measuring the



distance between the set of y’ and the set of
y.

To make this concrete, let’s go back to the
example above where we have only 2 data
points (x =1,y =5)and (x =3,y =9). We
want to find w and b such that f(x) =wx + b
best suited this data. Given the set of
parameter values w = 3 and b = 4, we get the
predicted outputs of 7 and 13 as shown in
Table 5-1. The objective function measures
the distance between the predicted outputs (7,
13) and the actual outputs (5, 9).

Table 5-1. Predicted outputs when w = 4 and
b=4

Predicted output
made by f(x | w=3,

Input b=4)=3x+4 Actual output
x=1 3*1+4=7 5
x=3 3*3+4=13 9

There are many types of distance metrics you
can use to derive your objective functions.



When the outputs are scalars (numbers), two
common metrics are Root Mean Squared
Error and Mean Absolute Error as shown in
Table 5.2.

Table 5-2. Two common objective functions
for scalar outputs

Objective function How to calculate Distance metrics

Root Mean Squared (yia—u:) Euclidean
n

Error (RMSE)

Mean Absolute n lyia—yil Manhattan
Error (MAE) =

However, many types of models don’t output
just one number given an input, but output a
distribution. For example, if your task has
three classes: [cat, dog, chicken], your model
might output an array of how likely it is that
your input belongs to each class. So the
predicted output might look like [0.1, 0.5,
0.4], which means the input has 10% chance
of being cat, 50% chance of being dog, 40%
chance of being chicken. The actual label for



this example is chicken, so the output is [0, 0,
1]. We want to measure the distance between
the predicted outputs that take the form [0.1,
0.5, 0.4] and the actual outputs that take the
form [0, O, 1]. In this case, the common
objective function is cross entropy and its
variation.

You can modify the objective function to
enforce your model to learn a set of
parameters with certain properties. As
discussed in the section Class Imbalance in
Chapter 3, you can modify the objective
function to encourage your model to focus on
examples of rare classes or examples that are
difficult to learn. You can also add
regularizers such as L.1 and L2 to your loss
function to encourage your model to choose
parameters of smaller values.

Each objective function gives you a set of
possible values your parameters can take.
This set of possible values for parameters is
known as the loss surface of a given objective
function. A small change to your objective



function can give you a very different loss
surface, which, in turn, gives you a very
different function for your model.

Understanding the possible parameters given
by different objective functions can help you
choose the objective function that is best
suited for your needs. However, this
understanding tends to require advanced
linear algebra, so it’s common for ML
engineers to use popular objective functions
that are known to give decent performance
for their problems without giving them much
thought.

While developing your model, if time
permits, you should experiment with different
objective functions to see how your model’s
behaviors change, both globally on all your
data or with respect to different slices of your
data. You might be surprised.

Learning Procedure

Learning procedures the procedures that help
your model find the set of parameters that



minimize a given objective function for a
given set of data, are diverseS. In some cases,
the parameters might be calculated exactly.
For example, in the case of linear functions,
the values of w and b can be calculated from
the averages and variances of x and y. In
most cases, however, the values of
parameters can’t be calculated exactly and
have to be approximated, usually via an
iterative procedure. For example, K-means
clustering uses an iterative procedure called
expectation—maximization algorithm.

The most popular family of iterative
procedures today is undoubtedly gradient
descent. The loss of a model at a given train
step is given by the objective function. The
gradient of an objective function with respect
to a parameter tells us how much that
parameter contributes to the loss. In other
words, the gradient is the direction that
lowers the loss from a current value the most.
The idea is to subject that gradient value from
that parameter, hoping that this would make



the parameter contribute less to the loss, and
eventually drive the loss down to 0.

Subtracting the raw gradient values from
parameters doesn’t work extremely well.
Transforming the gradient values first (such
as multiplying the gradient value with 0.003)
then subtracting that transformed values from
parameters helps models converge much
faster. The function that determines how to
update a parameter given a gradient value is
called an update algorithm, or an optimizer.
Common optimizers include Momentum,
Adam, and RMSProp.

Good optimizers can both speed up your
model training process and help your model
converge to a better set of parameters. Even
though optimizers help your model find the
set of parameters that minimize a given
objective function for a given set of data, the
set of parameters that minimize the loss for
your training data isn’t always the best
optimizer for you, as you might want the
parameters that will perform well on the data



your model will encounter in production too®*.
While developing ML models, especially
with gradient descent-based models, it’s often
helpful to explore with different types of
optimizers. In section AutoML, we’ll discuss
how to use ML to find the best optimizers for
your model.

Choosing ML Models

In this section, we’ll first discuss different
types of ML problems, then we’ll discuss
different types of ML algorithms used to
solve these problems.

Framing ML Problems

To decide which ML model to use to solve
your problem, you first need to frame your
problem into a problem that ML can solve.

The most general types of ML problems are
classification and regression. Classification
models classify inputs into different
categories. For example, you want to classify



each email to be either spam or not spam.
Regression models output a continuous value.
An example is a house prediction model that
outputs the price of a given house.

A regression model can easily be framed as a
classification model and vice versa. For
example, house prediction can become a
classification task if we quantize the house
prices into buckets such as under $100,000,
$100,000 - 200,000, $200,000 - 500,000, ...
and predict the bucket the house should be in.
The email classification model can become a
regression model if we make it outputs values
between 0 and 1, and use a threshold to
determine which values should be SPAM (for
example, if the value is above 0.5, the email
is spam).

Within classification problems, the fewer
classes there are to classify, the simpler the
problem is. The simplest is binary
classification where there are only two
possible classes. Examples of binary
classification include classifying whether a



comment is toxic or not toxic, whether a lung
scan shows signs of cancer or not, whether a
transaction is fraudulent or not. It’s unclear
whether this type of problem is common
because they are common in nature or simply
because ML practitioners are most
comfortable handling them. Dealing with
binary classification problems, including
upsampling and downsampling as well as
visualizing ROC curves and confusion
matrices, is much easier than dealing with
multiclass classifiers.

When there are more than two classes, the
problem becomes multiclass classification.
When the number of classes is high, such as
disease diagnosis where the number of
diseases can go up to thousands or product
classifications where the number of products
can go up to tens of thousands, the problem
can be very challenging. The first challenge is
in data collection. In my experience, ML
models typically need at least 100 examples
for each class to learn to classify that class.



So if you have 1000 classes, you already need
at least 100,000 examples. The data
collection can be especially challenging when
some of the classes are rare, and if you have
thousands of classes, there’s a high likelihood
that some of them are rare.

When the number of classes is large,
hierarchical classification might be useful. In
hierarchical classification, you have a
classifier to first classify each example into
one of the large groups. Then you have
another classifier to classify this example into
one of the subgroups. For example, for
product classification, you can first classify
each product into one of the four main
categories: electronics, home & kitchen,
fashion, and pet supplies. After a product has
been classified into a category, say fashion,
you can use another classifier to put this
product into one of the subgroups: shoes,
shirt, jeans, accessories.

In both binary and multiclass classification,
each example belongs to exactly one class.



When an example can belong to multiple
classes, we have a multilabel classification
problem. For example, when building a
model to classify articles into three topics:
[tech, entertainment, finance], an article can
be in both tech and finance.

There are two major approaches to multilabel
classification problems. The first is to treat it
as you would a multiclass classification. In
multiclass classification, if there are three
possible classes [tech, entertainment, finance]
and the label for an example is entertainment,
you represent this label with the vector [0, 1,
0]. In multilabel classification, if an example
has both labels entertainment and finance, its
label will be represented as [0, 1, 1].

The second approach is to turn it into
multiple binary classification problems. For
the article classification problem above, you
can have three models corresponding to three
topics, where each model outputs whether an
article is in that topic or not.



Changing the way you frame your problem
might make your problem significantly
harder or easier. Consider the task of
predicting what app a phone user wants to use
next. A naive setup would be to use user’s
and context’s features (user demographic
information, time, location, previous apps
used) as input and output a probability
distribution for every single app on the user’s
phone. This means that the last layer of your
model will have the shape [number of hidden
layer| x [number of apps|. This is a bad
approach because whenever a new app is
added, you have to retrain your model, or at
least the last layer of your model. A better
approach is to have the user profile, the
environment, and the app profile as input, and
output a value between 0 and 1, the higher the
value, the more likely the user will open the
app given the context.

Decoupling Objectives

When solving a problem, you might have



multiple objectives in mind. Imagine you’re
building a system to rank items on users’
newsfeed. Your original goal is to maximize
users’ engagement. You want to achieve this
goal through the following three objectives.

1. Filter out spam
2. Filter out NSFW content

3. Rank posts by engagement: how
likely users will click on it

However, you quickly learned that optimizing
for users’ engagement alone can lead to
questionable ethical concerns. Because
extreme posts tend to get more engagements,
your algorithm learned to prioritize extreme
content®®, You want to create a more
wholesome newsfeed. So you have a new
goal: maximize users’ engagement while
minimizing the spread of extreme views
and misinformation. To obtain this goal,
you add two new objectives to your original
plan.



1. Filter out spam
Filter out NSFW content
Filter out misinformation

Rank posts by quality

o kA W N

Rank posts by engagement: how
likely users will click on it

Now, objectives 4 and 5 are in conflict with
each other. If a post is very engaging but it’s
of questionable quality, should that post rank
high or low?

Let’s take a step back to see what exactly
each objective does. To rank posts by quality,
you first need to predict posts’ quality and
you want posts’ predicted quality to be as
close to their actual quality as possible.
Essentially, you want to minimize
quality_loss: the difference between each
post’s predicted quality and its true quality’.

Similarly, to rank posts by engagement, you
first need to predict the number of clicks each



post will get. You want to minimize
engagement_loss: the difference between
each post’s predicted clicks and its actual
number of clicks.

One approach is to combine these two losses
into one loss and train one model to minimize
that loss.

loss = a quality_loss + [ engagement_loss

You can randomly test out different values of
a and 3 to find the values that work best. If
you want to be more systematic about tuning
these values, you can check out Pareto
optimization, “an area of multiple criteria
decision making that is concerned with
mathematical optimization problems
involving more than one objective function to

be optimized simultaneously®”.

A problem with this approach is that each
time you tune o and f—for example, if your
users’ newsfeed’s quality goes up but users’
engagement goes down, you might want to
decrease o and increase f—you’ll have to
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retrain your model.

Another approach is to train two different
models, each optimizing one loss. So you
have two models:

e quality_model minimizes
quality_less and outputs the
predicted quality of each post.

¢ engagement_model minimizes
engagement_loss and outputs the
predicted number of clicks of each
post.

You can combine the outputs of these two
models and rank posts by their combined
scores:

a quality_score + 3 engagement_score

Now you can tweak a and 3 without
retraining your models!

In general, when there are multiple
objectives, it’s a good idea to decouple them
first because it makes model development



and maintenance easier. First, it’s easier to
tweak your system without retraining models,
as explained above. Second, it’s easier for
maintenance since different objectives might
need different maintenance schedules.
Spamming techniques evolve much faster
than the way post quality is perceived, so
spam filtering systems need updates at a
much higher frequency than quality ranking
systems.

Evaluating ML Algorithms

When thinking about ML algorithms, many
people think of classical ML algorithms
versus neural networks. There are a lot of
interests in neural networks, especially in
deep learning, which is understandable given
that most of the Al progress in the last decade
is due to neural networks getting bigger and
deeper.

Many newcomers to the field that I've talked
to think that deep learning is replacing
classical ML algorithms. However, even



though deep learning is finding more use
cases in production, classical ML algorithms
are not going away. Many recommendation
systems still rely on collaborative filtering
and matrix factorization. Tree-based
algorithms, including gradient-boosted trees,
still power many classification tasks with
strict latency requirements.

Even in applications where neural networks
are deployed, classic ML algorithms are still
being used in tandem, either in an ensemble
or to help extract features to feed into neural
networks.

When selecting a model for your problem,
you don’t choose from every possible model
out there, but usually focus on a set of models
suitable for your problem. For example, if
your boss tells you to build a system to detect
toxic tweets, you know that this is a text
classification problem — given a piece of
text, classify whether it’s toxic or not — and
common models for text classification
include Naive Bayes, Logistic Regression,



recurrent neural networks, Transformer-based
models such as BERT, GPT, and their
variants.

If your client wants you to build a system to
detect fraudulent transactions, you know that
this is the classic abnormality detection
problem — fraudulent transactions are
abnormalities that you want to detect — and
common algorithms for this problem are
many, including k-nearest neighbors,
isolation forest, clustering, and neural
networks.

Knowledge of common ML tasks and the
typical approaches to solve them is essential
in this process.

Different types of algorithms require different
amounts of labels as well as different
amounts of compute power. Some take longer
to train than others, while some take longer to
make predictions. Non-neural network
algorithms tend to be much easier to explain
(for example, what features in the email that



made the model classify it as spam) than
neural networks.

When considering what model to use, it’s
important to consider not only the model’s
performance, measured by metrics such as
accuracy, F1 score, log loss, but also its other
properties such as how much data it needs to
run, how much compute and time it needs to
both train and do inference, and
interpretability. For example, a simple
logistic regression model might lower
accuracy than a complex neural network, but
it requires less labeled data to start, it’s much
faster to train, it’s much easier to deploy, and
it’s also much easier to explain why it’s
making certain predictions.

Comparing ML algorithms is out of the scope
for this book. No matter how good a
comparison is, it will be outdated as soon as
new algorithms come out. Back in 2016,
LSTM-RNNs were all the rage and the
backbone of the architecture seq2seq
(Sequence-to-Sequence) that powered many



NLP tasks from machine translation to text
summarization to text classification.
However, just two years later, recurrent
architectures were largely replaced by
Transformer architectures for NLP tasks.

To understand different algorithms, the best
way is to equip yourself with basic ML
knowledge and run experiments with the
algorithms you’re interested in. To keep up-
to-date with so many new ML techniques and
models, I find it helpful to monitor trends at
major ML conferences such as NeurIPS,
ICLR, and ICML as well as following
researchers whose work has a high signal-to-
noise ratio on Twitter.

Without getting into specifics of different
algorithms, here are six tips that might help
you decide what ML algorithms to work on
next.

1. Avoid the state-of-the-art trap

While helping companies as well as
recent graduates get started in ML, I



usually have to spend a non-trivial
amount of time steering them away
from jumping straight into state-of-
the-art (SOTA) models. I can see
why people want SOTA models.
Many believe that these models
would be the best solutions for their
problems — why try an old solution
if you believe that a newer and
superior solution exists? Many
business leaders also want to use
SOTA models because they want to
use them to make their businesses
appear cutting-edge. Developers
might also be more excited getting
their hands on new models than
getting stuck into the same old things
over and over again.

Researchers often only evaluate
models in academic settings, which
means that a model being SOTA
often only means that it performs
better than existing models on some



static datasets. It doesn’t mean that
this model will be fast enough or
cheap enough for you to implement
in your case. It doesn’t even mean
that this model will perform better
than other models on your data.

While it’s essential to stay up-to-date
to new technologies and beneficial to
evaluate them for your businesses,
the most important thing to do when
solving a problem is finding
solutions that can solve that problem.
If there’s a solution that can solve
your problem that is much cheaper
and simpler than SOTA models, use
the simpler solution.

. Start with the simplest models

Zen of Python states that “simple is
better than complex”, and this
principle is applicable to ML as well.
Simplicity serves three purposes.
First, simpler models are easier to



deploy, and deploying your model
early allows you to validate that your
prediction pipeline is consistent with
your training pile. Second, starting
with something simple and adding
more complex components step-by-
step makes it easier to understand
your model and debug it. Third, the
simplest model serves as a baseline
to which you can compare your more
complex models.

Simplest models are not always the
same as models with the least effort.
For example, pretrained BERT
models are complex, but they require
little effort to get started with,
especially if you use a ready-made
implementation like the one in
HuggingFace’s Transformer. In this
case, it’s not a bad idea to use the
complex solution, given that the
community around this solution is
well-developed enough to help you



get through any problems you might
encounter. However, you might still
want to experiment with simpler
solutions, if you haven’t already, to
make sure that pretrained BERT is
indeed better than those simpler
solutions for your problem.

. Avoid human biases in selecting
models

Imagine an engineer on your team is
assigned the task of evaluating
which model is better for your
problem: a gradient boosted tree or a
pretrained BERT model. After two
weeks, this engineer announced that
the best BERT model outperforms
the best gradient boosted tree by 5%.
Your team decides to go with the
pretrained BERT model.

A few months later, however, a
seasoned engineer joins your team.
She decides to look into gradient



boosted trees again and finds out that
this time, the best gradient boosted
tree outperforms the pretrained
BERT model you currently have in
production. What happened?

There are a lot of human biases in
evaluating models. Part of the
process of evaluating an ML
architecture is to experiment with
different features and different sets
of hyperparameters to find the best
model of that architecture. If an
engineer is more excited about an
architecture, she will likely spend a
lot more time experimenting with it,
which might result in better
performing models for that
architecture.

When comparing different
architectures, it’s important to
compare them under comparable
setups. If you run 100 experiments
for an architecture, it’s not fair to



only run a couple of experiments for
the architecture you’re evaluating it
against. You also want to run 100
experiments for the other
architectures too.

. Evaluate good performance now vs.

good performance later
9 10

While evaluating models, you might
want to take into account their
potential for improvements in the
near future, and how easy/difficult it
is to achieve those improvements.

. Trade-offs

There are many tradeoffs you have
to make when selecting models.
Understanding what’s more
important in the performance of your
ML system will help you choose the
most suitable model.

One classic example of tradeoff is



the false positives and false
negatives tradeoff. Reducing the
number of false positives might
increase the number of false
negatives, and vice versa. In a task
where false positives are more
dangerous than false negatives, such
as fingerprint unlocking
(unauthorized people shouldn’t be
classified as authorized and given
access), you might prefer a model
that makes less false positives.
Similarly, in a task where false
negatives are more dangerous than
false positives, such as covid
screening (patients with covid
shouldn’t be classified as no covid),
you might prefer a model that makes
less false negatives.

Another example of tradeoff is
latency and accuracy — a more
complex model might deliver higher
accuracy but might give higher



latency. Many people care about the
interpretability and performance
tradeoff. A more complex model can
give a better performance but its
results are less interpretable.

6. Understand your model’s
assumptions

The statistician George Box said in
1976 that “all models are wrong, but
some are useful”. The real world is
intractably complex, and models can
only approximate using assumptions.
Every single model comes with its
own assumptions. Understanding
what assumptions a model makes
and whether our data satisfies those
assumptions can help you evaluate
which model works best for your use
case.

Below are some of the common assumptions.
It’s not meant to be an exhaustive list, but just
a demonstration.



e Prediction assumption: every model
that aims to predict an output Y from
an input X makes the assumption
that it’s possible to predict Y based
on X.

e [ID: Neural networks assume that
the examples are independent and
identically distributed, which means
that all the examples are
independently drawn from the same
joint distribution.

e Smoothness: Every supervised
machine learning method assumes
that there’s a set of functions that
can transform inputs into outputs
such that similar inputs are
transformed into similar outputs. If
an input X produces an output Y,
then an input close to X would
produce an output proportionally
closeto Y.

e Tractability: Let X be the input and
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Z be the latent representation of X.
Every generative model makes the
assumption that it’s tractable to
compute the probability P(Z|X).

e Boundaries: A linear classifier
assumes that decision boundaries are
linear.

e Conditional independence: A Naive
Bayes classifier assumes that the
attribute values are independent of
each other given the class.

e Normally distributed: many
statistical methods assume that data
is normally distributed.

Ensembles

When considering an ML solution to your
problem, you might want to start with a
system that contains just one model, and the
process of selecting one model for your
problem is discussed above. After you’ve



deployed your system, you might think about
how to continue improving its performance.
One method that has consistently given your
system a performance boost is to use an
ensemble of multiple models instead of just
an individual model to make predictions.
Each model in the ensemble is called a base
learner. For example, for the task of
predicting whether an email is SPAM or
NOT SPAM, you might have 3 different
models. The final prediction for each email is
the majority vote of all these three models. So
if at least two base learners output SPAM, the
email will be classified as SPAM.

20 out of 22 winning solutions on Kaggle
competitions in 2021, as of August 2021, use
ensembles'!. An example of an ensemble
used for a Kaggle competition is shown in
Figure 5-1. Ensembling methods are less
favored in production because ensembles are
more complex to deploy and harder to
maintain. However, they are still common for
tasks where a small performance boost can



lead to a huge financial gain such as
predicting click-through rate (CTR) for ads.
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Figure 5-1. The ensemble used in the top solution for the
Cassava Leaf Disease Classification competition on Kaggle.
Image by Jannis Hanke.
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We’ll go over an example to give you the
intuition of why ensembling works. Imagine
you have three email spam classifiers, each
with an accuracy of 70%. Assuming that each
classifier has an equal probability of making
a correct prediction for each email, and that
these three classifiers are not correlated, we’ll
show that by taking the majority vote of these
three classifiers, we can get an accuracy of
78.4%.

For each email, each classifier has a 70%
chance of being correct. The ensemble will be
correct if at least 2 classifiers are correct.
Table 5-1 shows the probabilities of different
possible outcomes of the ensemble given an
email. This ensemble will have an accuracy
of 0.343 + 0.441 = 0.784, or 78.4%.

Table 5-3. Possible outcomes of the ensemble
that takes the majority vote from three
classifiers

Outputs of 3
models Probability Ensemble’s outpu



All 3 are correct 0.7*0.7*0.7 = Correct
0.343

Only 2 are correct (0.7 * 0.7 * 0.3) * 3 Correct
=0.441

Only 1 is correct (0.3*0.3*0.7) *3 Wrong
=0.189

None is correct 0.3*0.3*0.3= Wrong
0.027

This calculation only holds if the classifiers
in an ensemble are uncorrelated. If all
classifiers are perfectly correlated — all three
of them make the same prediction for every
email — the ensemble will have the same
accuracy as each individual classifier. When
creating an ensemble, the less correlation
there is among base learners, the better the
ensemble will be. Therefore, it’s common to
choose very different types of models for an
ensemble. For example, you might create an
ensemble that consists of one transformer
model, one recurrent neural network, and one
gradient boosted tree.

There are three ways to create an ensemble:



bagging to reduce variance, boosting to
reduce bias, and stacking to help with
generalization. Other than to help boost
performance, according to several survey
papers, ensemble methods such as boosting
and bagging, together with resampling, have
shown to help with imbalanced datasets'?, 13,
We’ll go over each of these three methods,

starting with bagging.

Bagging

Bagging, shortened from bootstrap
aggregating, is designed to improve both the
training stability'* and accuracy of ML
algorithms. It reduces variance and helps to
avoid overfitting.

Given a dataset, instead of training one
classifier on the entire dataset, you sample
with replacement to create different datasets,
called bootstraps, and train a classification or
regression model on each of these bootstraps.
Sampling with replacement ensures that each
bootstrap is independent from its peers.



Figure 5-2 shows an illustration of bagging.

If the problem is classification, the final
prediction is decided by the majority vote of
all models. For example, if 10 classifiers vote
SPAM and 6 models vote NOT SPAM, the
final prediction is SPAM.

If the problem is regression, the final
prediction is the average of all models’
predictions.

Bagging generally improves unstable
methods, such as neural networks,
classification and regression trees, and subset
selection in linear regression. However, it can
mildly degrade the performance of stable

methods such as k-nearest neighbors!®.
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Figure 5-2. Bagging illustration by Sirakorn

A random forest is an example of bagging. A
random forest is a collection of decision trees
constructed by both bagging and feature
randomness, where each tree can pick only
from a random subset of features to use.

Boosting

Boosting is a family of iterative ensemble
algorithms that convert weak learners to
strong ones. Each learner in this ensemble is
trained on the same set of samples but the
samples are weighted differently among
iterations. As a result, future weak learners
focus more on the examples that previous
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weak learners misclassified. Figure 5-3 shows
an illustration of boosting.

1.

You start by training the first weak
classifier on the original dataset.

Samples are reweighted based on
how well the first classifier classifies
them, e.g. misclassified samples are
given higher weight.

Train the second classifier on this
reweighted dataset. Your ensemble
now consists of the first and the
second classifiers.

Samples are weighted based on how
well the ensemble classifies them.

. Train the third classifier on this

reweighted dataset. Add the third
classifier to the ensemble.

Repeat for as many iterations as
needed.

Form the final strong classifier as a



weighted combination of the existing
classifiers -- classifiers with smaller
training errors have higher weights.

IMAGE TO COME

Figure 5-3. Boosting illustration by Sirakorn

An example of a boosting algorithm is
Gradient Boosting Machine which produces a
prediction model typically from weak
decision trees. It builds the model in a stage-
wise fashion like other boosting methods do,
and it generalizes them by allowing
optimization of an arbitrary differentiable
loss function.

XGBoost, a variant of GBM, used to be the
algorithm of choice for many winning teams


https://en.wikipedia.org/wiki/Bootstrap_aggregating#/media/File:Ensemble_Bagging.svg
https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions

of machine learning competitions. It’s been
used in a wide range of tasks from
classification, ranking, to the discovery of the
Higgs Boson®. However, many teams have
been opting for LightGBM, a distributed
gradient boosting framework that allows
parallel learning which generally allows
faster training on large datasets.

Stacking

Stacking means that you train base learners
from the training data then create a meta-
learner that combines the outputs of the base
learners to output final predictions, as shown
in Figure 5-4. The meta-learner can be as
simple as a heuristic: you take the majority
vote (for classification tasks) or the average
vote (for regression tasks) from all base
learners. It can be another model, such as a
logistic regression model or a linear
regression model.
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Figure 5-4. A visualization of a stacked ensemble from 3
base learners

For more great advice on how to create an
ensemble, refer to this awesome ensemble
guide by one of Kaggle’s legendary team
MLWave.

AutoML

There’s a joke that a good ML researcher is


https://mlwave.com/kaggle-ensembling-guide/

someone who will automate themselves out
of job, designing an Al algorithm intelligent
enough to design itself. It was funny until the
TensorFlow DevSummit 2018, where Jeff
Dean took the stage and declared that Google
intended on replacing ML expertise with 100
times more computational power, introducing
AutoML to the excitement and horror of the
community. Instead of paying a group of 100
ML researchers/engineers to fiddle with
various models and eventually select a sub-
optimal one, why not use that money on
compute to search for the optimal model? A
screenshot from the recording of the event is
shown in Figure 5-5.
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Figure 5-5. Jeff Dean unveiling Google’s AutoML at
TensorFlow Dev Summit 2018

Soft AutoML: Hyperparameter Tuning

AutoML refers to the process of applying ML
to real-world problems. One mild form, and
the most popular form, of AutoML in
production is hyperparameter tuning. A
hyperparameter is a parameter supplied by
users whose value is used to control the
learning process, e.g. learning rate, batch
size, number of hidden layers, number of
hidden units, dropout probability, and in
Adam optimizer, etc. Even quantization level
— e.g. mixed-precision, fixed-point — can
be considered a hyperparameter to tune.

With different sets of hyperparameters, the
same model can give drastically different
performances on the same dataset. Melis et
al. showed in their 2018 paper On the State of
the Art of Evaluation in Neural Language
Models that weaker models with well-tuned
hyperparameters can outperform stronger,


https://arxiv.org/pdf/1707.05589.pdf

fancier models. The goal of hyperparameter
tuning is to find the optimal set of
hyperparameters for a given model within a
search space — the performance of each set
evaluated on the validation set.

Despite knowing its importance, many still
ignore systematic approaches to
hyperparameter tuning in favor of a manual,
gut-feeling approach. The most popular is
arguably Graduate Student Descent (GSD), a
technique in which a graduate student fiddles
around with the hyperparameters until the
model works'”.

However, more and more people are adopting
hyperparameter tuning as part of their
standard pipelines. Popular ML frameworks
either come with built-in utilities or have
third-party utilities for hyperparameter
tuning, e.g. scikit-learn with auto-sklearn',
TensorFlow with Keras Tuner. Popular
methods for hyperparameter tuning including
random search!®, grid search, Bayesian
optimization. The book AutoML: Methods,



Systems, Challenges by the AutoML group at
the University of Freiburg dedicates its first
chapter to hyperparameter optimization,
which you can read online for free.

When tuning hyperparameters, keep in mind
that a model’s performance might be more
sensitive to the change in one hyperparameter
than another, and therefore sensitive
hyperparameters should be more carefully
tuned.

WARNING

One important thing is to never use your test
split to tune hyperparameters. Choose the best
set of hyperparameters for a model based on its
performance on a valid split, then report the
model’s final performance on the test split. If
you use your test split to tune hyperparameters,
you risk overfitting your model to the test split.

Hard AutoML: Architecture search and
learned optimizer

Some teams take hyperparameter tuning to
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the next level: what if we treat other
components of a model or the entire model as
hyperparameters. The size of a convolution
layer or whether or not to have a skip layer
can be considered a hyperparameter. Instead
of manually putting a pooling layer after a
convolutional layer or ReLu after linear, you
give your algorithm these building blocks and
let it figure out how to combine them. This
area of research is known as architectural
search, or neural architecture search (NAS)
for neural networks, as it searches for the
optimal model architecture.

A NAS setup consists of three components:

e a search space that defines possible
neural networks, e.g. building blocks
to choose from and constraints on
how they can be combined.

¢ a performance estimation strategy to
evaluate the performance of a
candidate architecture. Even though
the final architecture resulting from



the research might need retraining,
the estimation for all candidate
architectures should be done without
having to re-construct or re-train
them from scratch.

e a search strategy to explore the
search space. A simple approach is
random search — randomly
choosing from all possible
configurations — which is unpopular
because it’s prohibitively expensive
even for NAS. Common approaches
include reinforcement learning?°
(rewarding the choices that improve
the performance estimation) and
evolution®! (adding mutations to an
architecture, choosing the best-
performing ones, adding mutations
to them, and so on).

For NAS, the search space is discrete — the
final architecture uses only one of the
available options for each layer/operation??,



and you have to provide the set of building
blocks. The common building blocks are
various convolutions of different sizes, linear,
various activations, pooling, identity, zero,
etc.. The set of building blocks varies based
on the base architecture, e.g. convolutional
neural networks or recurrent neural networks.

In a typical ML training process, you have a
model and then a learning algorithm, a set of
functions that specifies how to update the
weights of the model. Learning algorithms
are also called optimizers, and popular
optimizers are, as you probably already
know, Adam, Momentum, SGD, etc. In
theory, you can include existing learning
algorithms as building blocks in NAS and
search for one that works best. In practice,
this is tricky since optimizers are sensitive to
the setting of their hyperparameters, and the
default hyperparameters don’t often work
well across architectures.

This leads to an exciting research direction:
what if we replace the functions that specify



the learning rule with a neural network? How
much to update the model’s weights will be
calculated by this neural network. This
approach results in learned optimizers, as
opposed to designed optimizers.

Since learned optimizers are neural networks,
they need to be trained. You can train your
learned optimizer on the same dataset you’re
training the rest of your neural network on,
but this requires you to train an optimizer
every time you have a task.

Another approach is to train a learned
optimizer once on a set of existing tasks —
using aggregated loss on those tasks as the
loss function and existing designed
optimizers as the learning rule — and use it
for every new task after that. For example,
Metz et al. constructed a set of thousands of
tasks to train learned optimizers. Their
learned optimizer was able to generalize to
both new datasets and domains as well as
new architectures®3. And the beauty of this
approach is that the learned optimizer can



then be used to train a better-learned
optimizer, an algorithm that improves on
itself.

Whether it’s architecture search or meta-
learning learning rules, the upfront training
cost is expensive enough that only a handful
of companies in the world can afford to
pursue them. However, it’s important for
people interested in ML in production to be
aware of the progress in AutoML for two
reasons. First, the resulting architectures and
learned optimizers can allow ML algorithms
to work off-the-shelf on multiple real-world
tasks, saving production time and cost, during
both training and inferencing. For example,
EffecientNets, a family of models produced
by Google’s AutoML team, surpass state-of-
the-art accuracy with up to 10x better
efficiency?*. Second, they might be able to
solve many real-world tasks previously
impossible with existing architectures and
optimizers.



FOUR PHASES OF ML MODEL
DEVELOPMENT

Before we transition to model training,
let’s take a look at the four phases of ML
model development. Once you’ve
decided to explore ML, your strategy
depends on which phase of ML adoption
you are in. There are four phases of
adopting ML. The solutions from a phase
can be used as baselines to evaluate the
solutions from the next phase.

Phase 1. Before machine learning

If this is your first time trying to make
this type of prediction from this type
of data, start with non-ML solutions.
Your first stab at the problem can be
the simplest heuristics. For example,
to predict what letter users are going
to type next in English, you can show
the top three most common English
letters, “e”, “t”, and “a”, which is
correct 30% of the time.



Facebook newsfeed was introduced in
2006 without any intelligent
algorithms — posts were shown in
chronological order. It wasn’t until
2011 that Facebook started displaying
news updates you were most
interested in at the top of the feed, as
shown in Figure 5-62°.
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Figure 5-6. Facebook newsfeed circa 2006

According to Martin Zinkevich in his
magnificent Rules of Machine
Learning: Best Practices for ML
Engineering:

“If you think that machine learning
will give you a 100% boost, then a
heuristic will get you 50% of the
way there.?%”

You might find out that non-ML
solutions work just fine and you don’t
need ML yet.

Phase 2. Simplest machine learning
models

For your first ML, model, you want to
start with a simple algorithm,
something that gives you visibility
into its working to allow you to
validate the usefulness of your
problem framing and your data.
Logistic regression XGBoost, K-
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nearest neighbors can be great for
that.

They are also easier to implement and
deploy which allows you to quickly
build out a framework from data
management to development to
deployment that you can test and
trust.

Phase 3. Optimizing simple models

Once you’ve had your ML framework
in place, you can focus on optimizing
the simple ML models with different
objective functions, hyperparameter
search, feature engineering, more
data, and ensembles.

This phase will allow you to answer
questions such as how quickly your
model decays in production and
update your infrastructure
accordingly.

Phase 4. Complex systems



Once you’ve reached the limit of your
simple models and your use case
demands significant model
improvement, experiment with more
complex models.

Model Training

In the previous section, we’ve discussed
different approaches to select both individual
models and ensembles of models for your
problem. During a project life cycle, you’ll
likely experiment with multiple model
architectures or different iterations of the
same model architecture. In this section, we’ll
discuss techniques essential to working with
multiple ML models at different scales,
including distributed training, and experiment
tracking and versioning.

Distributed Training



As models are getting bigger and more
resource-intensive, companies care a lot more
about training at scale?’. Expertise in
scalability is hard to acquire because it
requires having regular access to massive
compute resources. Scalability is a topic that
merits a series of books. This section covers
some notable issues to highlight the
challenges of doing ML at scale and provide
a scaffold to help you plan the resources for
your project accordingly.

It’s common to train a model using a dataset
that doesn’t fit into memory. It happens a lot
when dealing with medical data such as CT
scans or genome sequences. It can also
happen with text data if you’re a tech giant
with enough compute resources to work with
a massive dataset (cue OpenAl, Google,
NVIDIA, Facebook).

When your data doesn’t fit into memory, you
will first need algorithms for preprocessing
(e.g. zero-centering, normalizing, whitening),
shuffling, and batching data out-of-memory



and in parallel. When a sample of your data is
too large, e.g. one machine can handle a few
samples at a time, you might only be able to
work with a small batch size which leads to
instability for gradient descent-based
optimization.

In some cases, a data sample is so large it
can’t even fit into memory and you will have
to use something like gradient checkpointing,
a technique that leverages the memory
footprint and compute tradeoff to make your
system do more computation with less
memory. According to the authors of the
open-source package gradient-checkpointing,
“for feed-forward model, we were able to fit
more than 10x larger models onto our GPU,
at only a 20% increase in computation
time”?8. Even when a sample fits into
memory, using checkpointing can allow you
to fit more samples into a batch, which might
allow you to train your model faster.

Data Parallelism



It’s now the norm to train ML models on
multiple machines (CPUs, GPUs, TPUs).
Modern ML frameworks make it easy to do
distributed training. The most common
parallelization method is data parallelism:
you split your data on multiple machines,
train your model on all of them, and
accumulate gradients. This gives rise to a
couple of issues.

A challenging problem is how to accurately
and effectively accumulate gradients from
different machines. As each machine
produces its own gradient, if your model
waits for all of them to finish a run —
Synchronous stochastic gradient descent
(SSGD) — stragglers will cause the entire
model to slow down, wasting time and
resources?”. The straggler problem grows
with the number of machines, as the more
workers, the more likely that at least one
worker will run unusually slowly in a given
iteration. However, there have been many
algorithms that effectively address this



problem 30 31 32

If your model updates the weight using the
gradient from each machine separately —
Asynchronous SGD (ASGD) — gradient
staleness might become a problem because
the gradients from one machine have caused
the weights to change before the gradients
from another machine have come in33.

The difference between SSGD and ASGD is
illustrated in Figure 5-7.
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Figure 5-7. ASGD vs. SSGD for data parallelism. Image by
Jim Dowling34



In theory, ASGD converges but requires
more steps than SSGD. However, in practice,
when gradient updates are sparse, meaning
most gradient updates only modify small
fractions of the parameters, the model
converges similarly>.

Another problem is that spreading your
model on multiple machines can cause your
batch size to be very big. If a machine
processes a batch size of 1000, then 1000
machines process a batch size of 1M
(OpenAI’s GPT-3 175B uses a batch size of
3.2M in 20203%). If training an epoch on a
machine takes 1M steps, training on 1000
machines takes 1000 steps. An intuitive
approach is to scale up the learning rate to
account for more learning at each step, but
we also can’t make the learning rate too big
as it will lead to unstable convergence. In
practice, increasing the batch size past a
certain point yields diminishing returns®’,38,

Last but not least, with the same model setup,
the master-worker sometimes uses a lot more



resources than other workers. If that’s the
case, to make the most use out of all
machines, you need to figure out a way to
balance out the workload among them. The
easiest way, but not the most effective way, is
to use a smaller batch size on the master-
worker and a larger batch size on other
workers.

Model Parallelism
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Figure 5-8. Data parallelism and model parallelism. Image
by Jure Leskovec.3?

With data parallelism, each worker has its
own copy of the model and does all the
computation necessary for the model. Model
parallelism is when different components of
your model are trained on different machines,
as shown in Figure 5-8. For example,
machine 0 handles the computation for the
first two layers while machine 1 handles the
next two layers, or some machines can handle
the forward pass while several others handle
the backward pass.

Model parallelism can be misleading in some
cases when parallelism doesn’t mean that
different parts of the model in different
machines are executed in parallel. For
example, if your model is a massive matrix
and the matrix is split into two halves on two
machines, then these two halves might be
executed in parallel. However, if your model
is a neural network and you put the first layer
on machine 1 and the second layer on



machine 2, and layer 2 needs outputs from
layer 1 to execute, then machine 2 has to wait
for machine 1 to finish first to run.

Pipeline parallelism is a clever technique to
make different components of a model on
different machines run more in parallel.
There are multiple variants to this, but the
key idea is to break the computation of each
machine into multiple parts, and when
machine 1 finishes the first part of its
computation, it passes the result onto
machine 2, then continues executing the
second part, and so on. Machine 2 now can
execute its computation on part 1 while
machine 1 executes its computation on part 2.

To make this concrete, consider you have 4
different machines and the first, second, third,
and fourth layers are on machine 1, 2, 3, and
4 respectively. Given a mini-batch, you break
it into 4 micro-batches. Machine 1 computes
the first layer on the first micro-batch, then
machine 2 computes the second layer on
machine 1’s results for the first micro-batch



while machine 1 computes the first layer on
the second micro-batch, and so on. Figure 5-9
shows how pipeline parallelism looks like on
4 machines, each machine runs both the
forward pass and the backward pass for one
component of a neural network.



,%%M '

il bbby

F1,0 FM ‘

Figure 5-9. Pipeline parallelism for a neural network on 4



machines, each machine runs both the forward pass (F) and
the backward pass (B) for one component of the neural
network. Image by Huang et al.

Model parallelism and data parallelism aren’t
mutually exclusive. Many companies use
both methods for better utilization of their
hardware, even though the setup to use both
methods can require significant engineering
effort.

Experiment Tracking and
Versioning

During the model development process, you
often have to experiment with many
architectures and many different models to
choose the best one for your problem. Some
models might seem similar to each other and
differ in only one hyperparameter — such as
one model uses the learning rate of 0.003
while the other model uses the learning rate
of 0.002 — and yet their performances are
dramatically different. It’s important to keep
track of all the defining characteristics of an
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experiment and its relevant artifacts. An
artifact is a file generated during an
experiment — examples of artifacts can be
files that show the loss curve, evaluation loss
graph, logs, or intermediate results of a model
throughout a training process. This enables
you to compare different experiments and
choose the one best suited for your needs.
Comparing different experiments can also
help you understand how small changes
affect your model’s performance, which, in
turn, gives you more visibility into how your
model works.

The process of tracking the progress and
results of an experiment is called experiment
tracking. The process of logging all the
details of an experiment for the purpose of
possibly recreating it later or comparing it
with other experiments is called versioning.
These two go hand-in-hand with each other.
Many tools originally set out to be
experiment tracking tools, such as Weights &
Biases, have grown to incorporate versioning.



Many tools originally set out to be versioning
tools, such as DVC, have also incorporated
experiment tracking.

Experiment tracking

A large part of training an ML model is
babysitting the learning processes. Many
problems can arise during the training
process, including loss not decreasing,
overfitting, underfitting, fluctuating weight
values, dead neurons, and running out of
memory. It’s important to track what’s going
on during training not only to detect and
address these issues but also to evaluate
whether your model is learning anything
useful.

When I just started getting into ML, all I was
told to track was loss and speed. Fast forward
several years, people are tracking so many
things that their experiment tracking boards
look both beautiful and terrifying at the same
time. Below is just a short list of things you
might want to consider tracking for each
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experiment during its training process.

e The loss curve corresponding to the
train split and each of the eval splits.

e The model performance metrics
that you care about on all non-test
splits, such as accuracy, F1,
perplexity.

e The speed of your model, evaluated
by the number of steps per second
or, if your data is text, the number of
tokens processed per second.

e System performance metrics such
as memory usage and CPU/GPU
utilization. They’re important to
identify bottlenecks and avoid
wasting system resources.

e The values over time of any
parameter and hyperparameter
whose changes can affect your
model’s performance, such as the
learning rate if you use a learning



rate schedule, gradient norms (both
globally and per layer) if you're
clipping your gradient norms, weight
norm especially if you’re doing
weight decay.

In theory, it’s not a bad idea to track
everything you can. Most of the time, you
probably don’t need to look at most of them.
But when something does happen, one or
more of them might give you clues to
understand and/or debug your model.
However, in practice, due to limitations of
tooling today, it can be overwhelming to
track too many things, and tracking less
important things can distract you from
tracking really important things..

Experiment tracking enables comparison
across experiments. By observing how a
certain change in a component affects the
model’s performance, you gain some
understanding into what that component does.

A simple way to track your experiments is to



automatically make copies of all the code
files needed for an experiment and log all
outputs with their timestamps*®. However,
using third-party experiment tracking tools
can give you nice dashboards and allow you
to share your experiments with your
coworkers.

Versioning

Imagine this scenario. You and your team
spent the last few weeks tweaking your
model and one of the runs finally showed
promising results. You wanted to use it for
more extensive tests so you tried to replicate
it using the set of hyperparameters you’d
noted down somewhere, only to find out that
the results weren’t quite the same. You
remembered that you’d made some changes
to the code between that run and the next, so
you tried your best to undo the changes from
memory because your reckless past self had
decided that the change was too minimal to
be committed. But you still couldn’t replicate



the promising result because there are just too
many possible ways to make change to
remember.

This problem could have been avoided if you
versioned your ML experiments. ML systems
are part code, part data so you need to not
only version your code but your data as well.
Code versioning has more or less become a
standard in the industry. However, at this
point, data versioning is like floss. Everyone
agrees it’s a good thing to do but few do it.

There are a few reasons why data versioning
is challenging. One reason is that because
data is often much larger than code, we can’t
use the same strategy that people usually use
to version code to version data.

For example, code versioning is done by
keeping track of all the changes made to a
codebase. A change is known as a diff, short
for difference. Each change is measured by
line-by-line comparison. A line of code is
usually short enough for line-by-line



comparison makes sense. However, a line of
your data, especially if it’s stored in a binary
format, can be indefinitely long. Saying that
this line of 1000000 characters is different
from the other line of 1000000 characters
isn’t going to be much helpful.

To allow users to revert to a previous version
of the codebase, code versioning tools do that
by keeping copies of all the old files.
However, a dataset used might be so large
that duplicating it multiple times might be
unfeasible.

To allow for multiple people to work on the
same code base at the same time, code
versioning tools duplicate the code base on
each person’s local machine. However, a
dataset might not fit into a local machine.

Second, there’s still confusion in what
exactly constitutes a diff when we version
data. Would diffs mean changes in the
content of any file in your data repository,
only when a file is removed or added, or



when the checksum of the whole repository
has changed?

As of 2021, data versioning tools like DVC
only register a diff if the checksum of the
total directory has changed and if a file is
removed or added.

Another confusion is in how to resolve merge
conflicts: if developer 1 uses data version X
to train model A and developer 2 uses data
version Y to train model B, it doesn’t make
sense to merge data versions X and Y to
create Z, since there’s no model
corresponding with Z.

Third, if you use user data to train your
model, regulations like GDPR might make
versioning this data complicated. For
example, regulations might mandate that you
delete user data if requested, making it legally
impossible to recover older versions of your
data.

Aggressive experiment tracking and
versioning helps with reproducibility, but



doesn’t ensure reproducibility. The
frameworks and hardware you use might
introduce non-determinism to your
experiment results*!, making it impossible to
replicate the result of an experiment without
knowing everything about the environment
your experiment runs in.

The way we have to run so many experiments
right now to find the best possible model is
the result of us treating ML as a blackbox.
Because we can’t predict which configuration
will work best, we have to experiment with
multiple configurations. However, I hope that
as the field progresses, we’ll gain more
understanding into different models and can
reason about what model will work best
instead of running hundreds, if not thousands
of experiments.

Model Offline Evaluation

One common but quite difficult question I
often encounter when consulting companies



on their Al strategies is: “How do I know that
the ML model is good?” In one case, a
company deployed ML to detect intrusions to
100 surveillance drones, but they had no way
of measuring how many intrusions their
system failed to detect, and couldn’t decide if
one ML algorithm was better than another for
their needs.

Lacking a clear understanding of how to
evaluate your ML systems is not necessarily a
reason for your ML project to fail, but it
might make it impossible to find the best
solution for your need, and make it harder to
convince your managers to adopt ML.

Ideally, the evaluation methods should be the
same in both the development and production
environments. But in many cases, the ideal is
impossible because during development, you
have ground truths, but in production, you
don’t have ground truths.

For certain tasks, it’s possible to infer or
approximate ground truths in production



based on user’s feedback. For example, for
the recommendation task, it’s possible to
infer if a recommendation is good by whether
users click on it. However, there are many
biases associated with this. The section
Continual Learning in chapter 7 will cover
how to leverage users’ feedback to improve
your systems in production.

For other tasks, you might not be able to
evaluate your model’s performance in
production directly, and might have to rely on
extensive monitoring to detect changes in
your model’s performance in particular and to
your system in general. We’ll cover
monitoring in the section Monitoring in
chapter 7.

Both monitoring and continual learning can
happen once your model has been deployed.
In this section, we’ll discuss methods to
evaluate your model’s performance before
it’s deployed. We’ll start with the baselines
against which we will evaluate our models.
Then we’ll cover some of the common



methods to evaluate your model beyond
overall accuracy metrics.

Baselines

Someone once told me that her new
generative model achieved the FID*? score of
10.3 on ImageNet. I had no idea what this
number meant or whether her model would
be useful for my problem.

Another time, I helped a company implement
a classification model where the positive
class appears 90% of the time. An ML
engineer on the team told me, all excited, that
their initial model achieved an F1 score of
0.90. I asked him how it was compared to
random. He had no idea. It turned out that if
his model randomly outputted the positive
class 90% of the time, its F1 score would also
be around 0.90*3. His model might as well be
making predictions at random, which meant it
probably didn’t learn anything much.

Evaluation metrics, by themselves, mean



little. When evaluating your model, it’s
essential to know the baseline you’re
evaluating it against. The exact baselines
should vary from one use case to another, but
here are the five baselines that might be
useful across use cases.

Random baseline

If our model just predicts at random,
what’s the expected performance? At
random means both “following a uniform
random distribution” or “following the
same distribution as the task’s label
distribution.”

For example, consider the task that has
two labels, NEGATIVE that appears 90%
of the time and POSITIVE that appears
10% of the time. Table 5-2 shows the F1
and accuracy scores of baseline models
making predictions at random. However,
as an exercise to see how challenging it is
for most people to have an intuition for
these values, try to calculate these raw



numbers in your head before looking at
the table.

Table 5-4. F1 and accuracy scores of a
baseline model predicting at random for a
task that has NEGATIVE that appears
90% of the time and POSITIVE that
appears 10% of the time.

Random

distribution Meaning F1

Uniform random Predicting each 0.167
label with equal
probability (50%)

Task’s label Predicting 0.1

distribution NEGATIVE 90%

of the time, and
POSITIVE 10% of

the time



Simple heuristic

Forget ML. If you just make predictions
based on simple heuristics, what
performance would you expect? For
example, if you want to build a ranking
system to rank items on a user’s newsfeed
with the goal of getting that user to spend
more time on the newsfeed, how much
time would a user spend on it if you just
rank all the items in reverse chronological
order, with the latest one shown first?

Zero rule baseline

The zero rule baseline is a special case of
the simple heuristic baseline when your
baseline model always predicts the most
common class.

For example, for the task of
recommending the app a user is most
likely to use next on their phone, the
simplest model would be to recommend



their most frequently used app. If this
simple heuristic can predict the next app
accurately 70% of the time, any model
you build has to outperform it
significantly to justify the added
complexity.

Human baseline

In many cases, the goal of ML is to
automate what would have been
otherwise done by humans, so it’s useful
to know how your model performs
compared to human experts. For example,
if you work on a self-driving system, it’s
crucial to measure your system’s progress
compared to human drivers, because
otherwise you might never be able to
convince your users to trust this system.
Even if your system isn’t meant to replace
human experts and only to aid them in
improving their productivity, it’s still
important to know in what scenarios this
system would be useful to humans.



Existing solutions

In some cases, ML systems are designed
to replace existing solutions, which might
be business logic with a lot of if/else
statements or third-party solutions. It’s
crucial to compare your new model to
these existing solutions. Your ML model
doesn’t always have to be better than
existing solutions to be useful. A model
whose performance is a little bit inferior
can still be useful if it’s much easier or
cheaper to use.

Picking up the usefulness thread from the last
section, a good system isn’t necessarily
useful. A system meant to replace human
experts often has to perform at least as well
as human experts to be useful. In some cases,
even if it’s better than human experts, people
might still not trust it, as in the case of self-
driving cars. On the contrary, a system that
predicts what word a user will type next on
their phone can perform much worse than a



native speaker and still be useful.

Evaluation Methods

In academic settings, when evaluating ML
models, people tend to fixate on their
performance metrics. However, in
production, we also want our models to be
robust, fair, calibrated, and overall, make
sense. We’ll introduce some evaluation
methods that help with measuring the above
characteristics of a model.

Perturbation Tests

A group of my students wanted to build an
app to predict whether someone has covid-19
through their cough. Their best model worked
great on the training data, which consisted of
2-second long cough segments collected by
hospitals. However, when they deployed it to
actual users, this model’s predictions were
close to random.

One of the reasons is that actual users’



coughs contain a lot of noise compared to the
coughs collected in hospitals. Users’
recordings might contain background music
or nearby chatter. The microphones they use
are of varying quality. They might start
recording their coughs as soon as recording is
enabled or wait for a fraction of a second.

Ideally, the inputs used to develop your
model should be similar to the inputs your
model will have to work with in production,
but it’s not possible in many cases. This is
especially true when data collection is
expensive or difficult and you have to rely on
the data collected by someone else. As a
result, inputs in production are often noisy
compared to inputs used in development**,
The model that performs best on the training
data isn’t necessarily the model that performs
best on noisy inputs in production.

To get a sense of how well your model might
perform with noisy data, you can make small
changes to your test splits to see how these
changes affect your model’s performance.



For the task of predicting whether someone
has covid-19 from their cough, you could
randomly add some background noise or
randomly clip the testing clips to simulate
how the recordings might be in production.
You might want to choose the model that
works best on the perturbed data instead of
the one that works best on the clean data.

The more sensitive your model is to noise,
the harder it will be to maintain it since if
your users’ behaviors change just slightly,
such as they change their phones and get
much higher quality microphones, your
model’s performance might degrade. It also
makes your model susceptible to adversarial
attack.

Invariance Tests

A Berkeley study found out that between
2008 and 2015, 1.3 million creditworthy
black and Latino applicants had their
mortgage applications rejected because of
their races. When the researchers used the


https://www.cbsnews.com/news/mortgage-discrimination-black-and-latino-paying-millions-more-in-interest-study-shows/

income and credit scores of the rejected
applications but deleted the race identifiers,
the applications were rejected.

Certain changes to the inputs shouldn’t lead
to changes in the output. In the case above,
changes to race information shouldn’t affect
the mortgage outcome. Similarly, changes to
applicants’ names shouldn’t affect their
resume screening results nor should
someone’s gender affect how much they
should be paid. If these happen, there are
biases in your model, which might render it
unusable no matter how good its performance
is.

To avoid these biases, one solution is to do
the same process that helped the Berkeley
researchers discover the biases: keep the
inputs the same but change the sensitive
information to see if the outputs change.
Better, you might want to exclude the
sensitive information from the features used
to train the model in the first place.



Directional Expectation Tests

Certain changes to the inputs should,
however, cause predictable changes in
outputs. For example, when developing a
model to predict housing prices, keeping all
the features the same but increasing the lot
size shouldn’t decrease the predicted price,
and decreasing the square footage shouldn’t
increase the output. If the outputs change in
the opposite expected direction, your model
might not be learning the right thing, and you
need to investigate it further before deploying
it.

Model Calibration

Model calibration is a subtle but crucial
concept to grasp. Imagine that someone
makes a prediction that something will
happen with a probability of 70%. What this
prediction means is that out of the times this
prediction is made, this event happens 70% of
the time. If a model predicts that team A will
beat team B with a 70% probability, and out



of the 1000 times these two teams play
together, team A only wins 60% of the time,
then we say that this model isn’t calibrated. A
calibrated model should predict that team A
wins with a 60% probability.

Model calibration is often overlooked by ML
practitioners, but it’s one of the most
important properties of any system that
makes predictions. To quote Nate Silver in
his book The Signal and the Noise,
calibration is “one of the most important tests
of a forecast — I would argue that it is the
single most important one.”

We’ll walk through two examples to show
why model calibration is important. First,
consider the task of building a recommender
system to recommend what movies users will
likely to watch next. Suppose user A watches
romance movies 80% of the time and comedy
20% of the time. If you choose your
recommendations to consist of only the
movies A will most likely to watch, the
recommendations will only consist of



romance movies because A is much more
likely to watch romance than comedy movies.
You might want a calibrated recommendation
system whose recommendations are
representative of users’ actual watching
habits. In this case, they should consist of
80% romance and 20% comedy“°.

Second, consider the task of building a model
to predict how likely it is that a user will click
on an ad. For the sake of simplicity, imagine
that there are only 2 ads, ad A and ad B. Your
model predicts that this user will click on ad
A with a 10% probability and on ad B with a
8% probability. You don’t need your model
to be calibrated to rank ad A above ad B.
However, if you want to predict how many
clicks your ads will get, you’ll need your
model to be calibrated. If your model predicts
that a user will click on ad A with a 10%
probability but in reality, the ad is only
clicked on 5% of the time, your estimated
number of clicks will be way off. If you have
another model that gives the same ranking



but is better calibrated than this model, you
might want to consider this other model.

To measure a model’s calibration, a simple
method is counting: you count the number of
times your model outputs the probability X
and the frequency Y of that prediction
coming true, and plot X against Y. In scikit-
learn, you can plot the calibration curve of a
binary classifier with the method
sklearn.calibration.calibration_curve, as
shown in Figure 5-10.
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Figure 5-10. The calibration curves of different models on a
toy task. The Logistic Regression model is the best calibrated
model because it directly optimizes logistic loss. Image by
scikit-learn.

To calibrate your models, a common method
is Platt scaling, which is implemented in
scikit-learn with
sklearn.calibration.CalibratedClassifierCV.
Another good open-source implementation by
Geoff Pleiss can be found on GitHub. For
readers who want to learn more about the
importance of model calibration and how to
calibrate neural networks, Lee Richardson
and Taylor Pospisil have an excellent blog
post based on their work at Google.

Confidence Measurement

Confidence measurement can be considered a
way to think about the usefulness threshold
for each individual prediction.
Indiscriminately showing all model’s
predictions to users, even the predictions that
the model is unsure about, can, at best, cause
annoyance and make users lose trust in the


https://scikit-learn.org/stable/modules/calibration.html#calibration
https://en.wikipedia.org/wiki/Platt_scaling
https://github.com/gpleiss/temperature_scaling
https://www.unofficialgoogledatascience.com/2021/04/why-model-calibration-matters-and-how.html

system, such as an activity detection system
on your smartwatch that thinks you’re
running even though you’re just walking a bit
fast. At worst, it can cause catastrophic
consequences, such as a predictive policing
algorithm that flags an innocent person as a
potential criminal).

If you only want to show the predictions that
your model is certain about, how do you
measure that certainty? What is the certainty
threshold at which the predictions should be
shown? What do you want to do with
predictions below that threshold — discard it,
loop in humans, or ask for more information
from users?

While most other metrics deal with system-
level measuring system’s performance on
average, confidence measurement is a metric
for each individual instance. System-level
measurement is useful to get a sense of
overall performance, but instance-level
metrics are crucial when you care about your
system’s performance on every instance, and



the model’s failure in just one instance can be
catastrophic.

Slice-based Evaluation

Slicing means to separate your data into
subgroups and look at your model’s
performance on those subgroups separately.
A common mistake that I’ve seen in many
companies is that they are focused only on
coarse-grained metrics like overall F1 or
accuracy on the entire datasets. This can lead
to two problems.

One is that their model performs differently
on different slices (subsets) of data when the
model should perform the same. For example,
if their data has two subgroups, one majority
and one minority, and the majority subgroup
accounts for 90% of the data. Model A
achieves 98% accuracy on the majority
subgroup but only 80% on the minority
subgroup, which means its overall accuracy is
96.2%. Model B achieves 95% accuracy on
the majority and 95% on the minority, which



means its overall accuracy is 95%. These two
models are compared in Table 5-3.

If a company focuses only on overall metrics,
they might go with Model A. They might be
very happy with this model’s high accuracy
until one day, their end users discover that
this model is biased against the minority
subgroup because the minority subgroup
happens to correspond to an underrepresented
demographic group*®. The focus on overall
performance is harmful not only because of
the potential public’s backlash, but also
because it blinds the company to huge
potential model’s improvements. If the
company sees the two models’ performance
on different subgroups, they can use different
strategies regarding these two models’
performance: improve model A’s
performance on the minority subgroup while
improving model’s performance overall, and
choose one after having weighed the pros and
cons of both.

Tahle 5-5 Twn model<’ nerformance on the
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majority subgroup, which accounts for 90%
of the data, and the minority subgroup, which
accounts for 10% of the data. Which model
would you choose?

Majority accuracy  Minority accuracy
Model A 98% 80%
Model B 95% 95%

Another problem is that their model performs
the same on different slices of data when the
model should perform differently. Some
subsets of data are more critical. For
example, when you build a model for user
churn prediction (predicting when a user will
cancel a subscription or a service), paid users
are more critical than non-paid users.
Focusing on a model’s overall performance
might hurt its performance on these critical
slices.

A fascinating and seemingly counterintuitive
reason why slice-based evaluation is crucial
is Simpson’s paradox, a phenomenon in


https://en.wikipedia.org/wiki/Simpson%27s_paradox

which a trend appears in several groups of
data but disappears or reverses when the
groups are combined. This means that model
A can perform better than model B on all data
together but model B performs better than
model A on each subgroup separately.
Consider model A’s and model B’s
performance on group A and group B as
shown in Table 5-4. Model A outperforms
model B for both group A and B, but when
combined, model B outperforms model A.

Table 5-6. An example of Simpson’s paradox.
Model A outperforms model B for both group
A and B, but when combined, model B
outperforms model A. Numbers from
Numbers from Charig et al.’s kidney stone
treatment study in 1986.

Group A Group B
Model A 93% (81/87) 73% (192/263)
Model B 87% (234/270) 69% (55/80)

Simpson’s paradox is more common than


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1339981/

you’d think. In 1973, Berkeley graduate
statistics showed that the admission rate for
men was much higher than for women, which
caused people to suspect biases against
women. However, a closer look into
individual departments showed that the
admission rates for women were actually
higher than those for men in 4 out of 6
departments, as shown in Figure 5-11.
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Figure 5-11. The overall graduate admission rate for men
and women at Berkeley in 1973 caused people to suspect
biases against women. However, a closer look into
individual departments showed that the admission rates for
women were actually higher than those for men in 4 out of 6
departments. Data from Sex Bias in Graduate Admissions:
Data from Berkeley (Bickel et al., 1975)

Whether this paradox happens in our work or
not, the point here is that aggregation can
conceal and contradict actual situations. To
make informed decisions regarding what
model to choose, we need to take into
account its performance not only on the entire
data, but also on individual slices. Slice-based
evaluation can give you insights to improve
your model’s performance both overall and
on critical data and help detect potential
biases. It might also help reveal non-machine
learning problems. Once, our team
discovered that our model performed great
overall but very poorly on traffic from mobile
users. After investigating, we realized that it
was because a button was half hidden on
small screens, like phone screens.


https://homepage.stat.uiowa.edu/~mbognar/1030/Bickel-Berkeley.pdf

Even when you don’t think slices matter,
understanding how your model performs in a
more fine-grained way can give you
confidence in your model to convince other
stakeholders, like your boss or your
customers, to trust your ML models.

To track your model’s performance on
critical slices, you’d first need to know what
your critical slices are. You might wonder
how to discover critical slices in your data.
Slicing is, unfortunately, still more of an art
than a science, requiring intensive data
exploration and analysis. Here are the three
main approaches:

e Heuristics-based: slice your data
using existing knowledge you have
of the data and the task at hand. For
example, when working with web
traffic, you might want to slice your
data along dimensions like mobile
versus desktop, browser type, and
locations. Mobile users might
behave very differently from desktop



users. Similarly, Internet users in
different geographic locations might
have different expectations on what
a website should look like.*’ This
approach might require subject
matter expertise.

Error analysis: manually go through
misclassified examples and find
patterns among them. We discovered
our model’s problem with mobile
users when we saw that most of the
misclassified examples were from
mobile users.

Slice finder: there has been research
to systemize the process of finding
slices, including Chung et al.’s Slice
finder: Automated data slicing for
model validation in 2019 and
covered in Sumyea Helal’s Subgroup
Discovery Algorithms: A Survey and
Empirical Evaluation (2016). The
process generally starts with
generating slice candidates with


https://ieeexplore.ieee.org/abstract/document/8731353
http://jcst.ict.ac.cn/EN/10.1007/s11390-016-1647-1

algorithms such as beam search,
clustering, or decision, then prune
out clearly bad candidates for slices,
and then rank the candidates that are
left.

Summary

In this chapter, we’ve covered what many
ML practitioners consider to be the most fun
part of an ML project cycle: developing,
training, and evaluating ML models. Not all
parts are equally fun, however. Making your
models work on a large distributed system,
like the one that runs models with hundreds
of millions, if not billions, of parameters, can
be challenging and require specialized system
engineering expertise. Intensive tracking and
versioning your many experiments are
generally agreed to be necessary, but doing it
might feel like a chore. Evaluating your
models’ fitness for the production
environment while you only have access to



training data is difficult. However, these
methods are necessary to sanity check your
models before further evaluating your models
in a production environment.

Often, no matter how good your office
evaluation of a model is, you still can’t be
sure of your model’s performance in
production until that model has been
deployed. In the next chapter, we’ll go over
how to deploy a model. And in the chapter
after that, we’ll cover how to continually
monitor and evaluate your model in
production.

1 In the section AutoML later in this chapter, we’ll
cover how to use algorithms to automatically choose a
function form from a predefined set of possible forms.

2 If you don’t know what these terms mean, you should
still be able to understand approximately 80% of this
chapter. However, I recommend that you take an
introductory course to Machine Learning or read an
introductory book on Machine Learning in your free
time.

3 The subfield that studies different learning procedures



is called optimization and it’s a large, complex, and
fascinating field. Readers interested in learning more
can refer to the book Algorithms for Optimization
(Kochenderfer and Wheeler, 2019).

4 1In technical terms, you want optimizers that can
generalize to unseen data.

5 Facebook Employee Raises Powered by ‘Really
Dangerous’ Algorithm That Favors Angry Posts
(SFist, 2019)

6 The Making of a YouTube Radical (NYT, 2019)

7 For simplicity, let’s pretend for now that we know to
measure a post’s quality.

8 While you’re at it, you might also want to read Jin
and Sendhoff’s great paper on applying Pareto
optimization for ML where the authors claimed that
“machine learning is inherently a multiobjective task.”

9 Andrew Ng has a great lecture where he explains that
if a learning algorithm suffers from high bias, getting
more training data by itself won’t help much. Whereas,
if a learning algorithm suffers from high variance,
getting more training data is likely to help.

10 Continual learning is almost magical. We’ll cover it
in detail in Chapter 7.

11 T went through the winning solutions listed at
https://farid.one/kaggle-solutions/. One solution used
33 models

12 A Review on Ensembles for the Class Imbalance
Problem: Bagging-, Boosting-, and Hybrid-Based
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https://sci2s.ugr.es/keel/pdf/algorithm/articulo/2011-IEEE%20TSMC%20partC-%20GalarFdezBarrenecheaBustinceHerrera.pdf

Approaches (Galar et al., 2011)

13 Solving class imbalance problem using bagging,
boosting techniques, with and without using noise
filtering method (Rekha et al., 2019)

14 Training stability here means less fluctuation in the
training loss.

15 Bagging Predictors (Leo Breiman, 1996)

16 Higgs Boson Discovery with Boosted Trees (Tiangi
Chen and Tong He, 2015)

17 GSD is a well-documented technique, see here, here,
here, and here.

18 auto-sklearn 2.0 also provides basic model selection
capacity.

19 Our team at NVIDIA developed Milano, a
framework-agnostic tool for automatic hyperparameter
tuning using random search. See the code at
https://github.com/NVIDIA/Milano.

20 Neural architecture search with reinforcement
learning, Zoph et Le. 2016.

21 Regularized Evolution for Image Classifier
Architecture Search, Real et al., 2018.

22 You can make the search space continuous to allow
differentiation, but the resulting architecture has to be
converted into a discrete architecture. See DARTS:
Differentiable Architecture Search, Liu et al., 2018.

23 [2009.11243] Tasks, stability, architecture, and
compute: Training more effective learned optimizers,


https://content.iospress.com/articles/international-journal-of-hybrid-intelligent-systems/his190261
https://link.springer.com/article/10.1023/A:1018054314350
http://proceedings.mlr.press/v42/chen14.html
https://www.reddit.com/r/MachineLearning/comments/6hso7g/d_how_do_people_come_up_with_all_these_crazy_deep/dj0tz1c/
https://www.reddit.com/r/MachineLearning/duplicates/8yvlzy/d_debate_about_science_at_organizations_like/
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https://twitter.com/guyzys/status/592847074170896384?lang=en
https://github.com/NVIDIA/Milano
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1802.01548
https://arxiv.org/pdf/1806.09055.pdf
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and using them to train themselves (Metz et al. 2020)

24 EfficientNet: Improving Accuracy and Efficiency
through AutoML and Model Scaling (Tan et Le, 2019)

25 The Evolution of Facebook News Feed (Samantha
Murphy, Mashable 2013)

26 Rules of Machine Learning: Best Practices for ML
Engineering (Martin Zinkevich, Google 2019)

27 For products that serve a large number of users, you
also have to care about scalability in serving a model,
which is outside of the scope of a machine learning
project so not covered in this book.

28 gradient-checkpointing repo. Tim Salimans, Yaroslav
Bulatov and contributors, 2017.

29 Distributed Deep Learning Using Synchronous
Stochastic Gradient Descent, Das et al., 2016.

30 Revisiting Distributed Synchronous SGD, Chen et al.,
ICLR 2017.

31 Improving MapReduce Performance in
Heterogeneous Environments, Zaharia et al., 2008.

32 Addressing the straggler problem for iterative
convergent parallel ML, Harlap et al., SoCC 2016.

33 Large Scale Distributed Deep Networks, Dean et al.,
NIPS 2012.

34 Distributed TensorFlow (Jim Dowling, O’Reilly
2017)

35 Hogwild!: A Lock-Free Approach to Parallelizing


https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
https://mashable.com/2013/03/12/facebook-news-feed-evolution/
https://developers.google.com/machine-learning/guides/rules-of-ml
https://github.com/cybertronai/gradient-checkpointing
https://arxiv.org/abs/1602.06709
https://arxiv.org/abs/1604.00981
https://static.usenix.org/event/osdi08/tech/full_papers/zaharia/zaharia.pdf
http://davidwd.org/papers/aaron_straggler16.pdf
http://papers.nips.cc/paper/4687-large-scale-distributed-
https://www.oreilly.com/content/distributed-tensorflow/
https://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf

Stochastic Gradient Descent (Niu et al., 2011)

36 Language Models are Few-Shot Learners (Brown et
al., 2020)

37 An Empirical Model of Large-Batch Training
(McCandlish et al., 2018)

38 [1811.03600] Measuring the Effects of Data
Parallelism on Neural Network Training (Shallue et
al., 2018)

39 Mining Massive Datasets course,Stanford, lecture 13.
Jure Leskovec. 2020.

40 TI’m still waiting for an experiment tracking tool that
integrates with git commits and data version control
commits.

41 Notable examples include atomic operations in
CUDA where non-deterministic orders of operations
lead to different floating point rounding errors between
runs.

42 Fréchet Inception Distance, a common metric for
measuring the quality of synthesized images. The
smaller the value, the higher the quality is supposed to
be.

43 The accuracy, in this case, would be around 0.80.

44  Other examples of noisy data include images with
different lighting or texts with accidental typos or
intentional text modifications such as typing “long” as
“loooooong.”

45 For more information on calibrated


https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1812.06162
https://arxiv.org/abs/1811.03600
http://web.stanford.edu/class/cs246/slides/13-dt.pdf

recommendations, check out the paper Calibrated
recommendations by Harald Steck in 2018 based on
his work at Netflix.

46 Google Photos Tags Two African-Americans As
Gorillas Through Facial Recognition Software
(Maggie Zhang, Forbes 2015) d

47 For readers interested in learning more about UX
design across cultures, Jenny Shen has a great post


https://openreview.net/forum?id=-mUx28nmXvD
https://www.forbes.com/sites/mzhang/2015/07/01/google-photos-tags-two-african-americans-as-gorillas-through-facial-recognition-software/?sh=641cf34d713d
https://blog.prototypr.io/ux-design-across-different-cultures-part-1-1caa12a504c0
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