
DOI: 10.1111/cgf.13609 COMPUTER GRAPHICS forum
Volume 00 (2019), number 00 pp. 1–15

LinesLab: A Flexible Low-Cost Approach for the Generation
of Physical Monochrome Art

S. Stoppel and S. Bruckner

University of Bergen, Bergen, Norway
sergejsto@googlemail.com, stefan.bruckner@uib.no

Abstract
The desire for the physical generation of computer art has seen a significant body of research that has resulted in sophisticated
robots and painting machines, together with specialized algorithms mimicking particular artistic techniques. The resulting setups
are often expensive and complex, making them unavailable for recreational and hobbyist use. In recent years, however, a new
class of affordable low-cost plotters and cutting machines has reached the market. In this paper, we present a novel system for
the physical generation of line and cut-out art based on digital images, targeted at such off-the-shelf devices. Our approach
uses a meta-optimization process to generate results that represent the tonal content of a digital image while conforming to the
physical and mechanical constraints of home-use devices. By flexibly combining basic sets of positional and shape encodings,
we are able to recreate a wide range of artistic styles. Furthermore, our system optimizes the output in terms of visual perception
based on the desired viewing distance, while remaining scalable with respect to the medium size.

Keywords: paint systems, image and video processing, halftoning and dithering, image and video processing

AMS CSS: I.3.3 [Computer Graphics]: Picture/Image Generation—Line and curve generation

1. Introduction

Early after the development of the computer, artists introduced
computational art as a new discipline. Mathematicians like Georg
Nees [Geo] and Frieder Nake [Fri] advanced computational art
by generatively creating complex geometric figures and drawing
them with an axial plotter on a paper canvas. As the technology
advanced, the output devices for computational art became more
complex, such as industrial devices equipped with a multi-axial
arm in the case of e-David [LPD13] or sophisticated 3D printers
that output multiple layers of paint as used in The Next Rembrandt
[Rem].

While these advances in technology are capable of generating
remarkable results, they rely on complex and expensive customized
hardware setups. Several manufacturers addressed the needs of hob-
byists and developed affordable axial plotters for home use. Al-
though these devices are more limited than their high-end counter-
parts (e.g. with respect to medium support and process feedback),
they are nonetheless capable of generating high-quality results at
often only a small fraction of the cost.

This new generation of hobbyist devices has given rise to a re-
newed interest in customized computer art for recreational purposes
that increasingly penetrate the mainstream. However, there is still
a lack of capable software that addresses the needs of this market,
providing a wide degree of stylistic choices, while simultaneously
taking into account the limitations of the available devices.

We present LinesLab, a flexible automated system that trans-
forms images into stylized drawings or cut-outs, by creating a set of
commands that can be interpreted and performed by conventional
hobby plotters and cutting machines, such as Silhouette Studio [Sil]
or Cricut [Cri]. The main contribution of our work does not consist
of the individual styles, but of the modular automated framework
for the creation of monochrome line art and paper cut-outs. Since
the LinesLab system is specifically targeted for hobbyist plotter
setups, we identify the limitations and capabilities of home-use
plotters and analyse the design space for line art and paper cuts.
Based on this constraint, we present a system that is capable of
creating a wide variety of art-inspired styles while being scalable
with respect to the medium size. A selection of the possible style
range is shown in Figure 1. The modular framework architecture

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and
John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

1



2 S. Stoppel & S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

Figure 1: Artistic examples generated with our method. From left to right: Paper cut-out, dashes drawing, single-line spiral drawing, stippling
and triangulation drawing.

(a) (b)

Figure 2: (a) The pinup girl of SAGE, the first documented case of
computer-generated art. (b) Schotter (1965), by Georg Nees—one
of the first physical drawings made by a drawing machine.

supports the synthesis and extension of new styles by combining
sets of positional and shape encoding modules. Furthermore, being
targeted at the generation of physical artwork, our approach can
optimize its output based on the targeted viewing distance.

2. Related Work

The areas of computational art and computational aesthetics have
been extensively studied over the years. Since we focus on physical
artwork, we first cover drawing machines in art, and then continue to
discuss related work on non-photorealistic rendering methods and
image stylization.

Simple devices to support the drawing process were constructed
already in the early 15th century. Later, automatic drawing machines
that could produce complex geometric patterns with ease, such as the
Harmonograph, were introduced. Jean Tinguely [Jea], for example,
created a number of sophisticated drawing machines with complex
repeating stroke patterns. While these machines could only generate
fixed patterns, this changed with the development of computers.
The roots of computer-generated art can be traced back to the late
1950s. The pin-up girl at the SAGE air defence system, as shown in
Figure 2(a), was probably the first drawing to appear on a computer
screen. The term computer art was first used by Edmund Berkeley in
1962, which inspired the first Computer Art Contest in 1963. This
annual contest propelled the development of computer-generated
art. Early pioneers of computer graphics like Georg Nees [Geo]
or Frieder Nake [Fri] used plotters to create the first artworks that
were constructed digitally and then physically drawn by a machine

(see Figure 2b). Over the subsequent years, a number of artists used
machines to create artworks, often of abstract nature.

In recent years, artists started to develop means for more realistic
machine-generated paintings. Harold Cohen [Har] built sophisti-
cated painting machines that could represent digital image content,
but his main focus was still on abstract art. Pindar Van Arman [Pin]
experimented with artificial intelligence based painting robots, col-
lectively referred to as cloudpainter, to create original composi-
tions. Tresset and Fol Leymarie [TFL13] described Paul the Robot,
a robotic installation for face drawings. A more general setup was
achieved with e-David, a feedback-guided painting robot, whose
rendering techniques were discussed by Deussen et al. [DLPT12]
and Lindemeier et al. [LPD13].

Galea et al. [GKAK16] presented a stippling method with fly-
ing quadrotor drones. Prévost et al. [PJJSH16] used an interactive
optimization process to guide the user in the creation of large-
scale paintings with spray paint. Jain et al. [JGKS15] developed
a force-controlled robot that was able to draw on arbitrary sur-
faces. A similar approach was taken by Jun et al. [JJC*16], where
a humanoid robot capable of drawing on a wall was developed.
Calinon et al. [CEB05] used existing tools to create a humanoid
robot to draw artistic portraits for entertainment purposes. Inspired
by these results, many hobbyists and developers created algorithms
and machines for drawing purposes. The project Caravaggio [Car]
by Michele Della Ciana is particularly noteworthy, as it served as one
of the inspirations for our work. Caravaggio is a custom-built polar-
graph drawing machine that produces artwork composed of a single
continuous path. A single illustration created with this approach
requires 12–24 h to complete. One of our aims was to reproduce the
compelling results generated by this approach for arbitrary digital
images on simple and affordable consumer devices.

Research in the areas of non-photorealistic rendering and
computer-based image stylization is closely related to our work,
as they typically aim to reproduce different types of artistic tech-
niques or media. A common strategy to approximate an image
is to use stroke-based rendering such as brush stroke techniques.
Most of these techniques use low-level abstraction based on lo-
cal image properties, such as done by Wen et al. [WLL*06] for
colour sketch generation through a segmentation algorithm. In some
approaches, the stroke placement is influenced by higher level

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



S. Stoppel & S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art 3

parameters. Shugrina et al. [SBC06] presented ‘empathic paint-
ing’, an interactive painterly rendering approach whose appearance
adapts to the emotional state of the viewer in real time. A simi-
lar approach was taken by Colton et al. [CVP08], who developed
a stroke-based rendering algorithm which heightens the emotions
of the depicted person. Ostromoukhov and Hersch [OH99] used a
multi-colour dithering approach to generate colour images made
of artistic shapes. Many approaches convert a raster image into
vector graphics, such as work done by Jeschke [Jes16], who intro-
duced a generalized formulation for diffusion curve images. Durand
et al. [DOM*01] introduced an interactive system that supports the
user in the creation of drawings from photographs in a variety of
styles.

Our work instead focuses on monochrome styles such as halfton-
ing, stippling or hatching. Pnueli and Bruckstein [PB96] were
among the first to discuss gridless halftoning techniques. Ahmed
et al. described two line-based halftoning techniques via recur-
sive division [Ahm14] and line amplitude modulation [AD16].
Ahmed [Ahm15] also addressed the general brightness/contrast
problem of line-based halftoning methods and proposed to use error
diffusion as pre-processing step. Pang et al. [PQW*08] presented a
structure-aware halftoning technique that aims to preserve the struc-
ture and tone similarities between the original and the halftone im-
ages. Later, Chang et al. [CAO09] used an error-diffusion approach
to create visually similar results as in the method by Pang et al.
but with significantly decreased computation time. Pedersen and
Singh [PS06] addressed the synthesis of organic maze structures,
and Xu and Kaplan [XK07] discussed a set of algorithms for design-
ing mazes based on images. Kaplan and Bosch [KB05] described
how to construct drawings with a continuous line by solving the trav-
eling salesman problem. Chiu et al. [CLLC15] extended the travel-
ing salesman problem (TSP) algorithm to a tone- and feature-aware
path creation method for circular scribble art. Hiller et al. [HHD03]
discussed generalized methods for computer-generated stippling by
exploring primitives other than points. Bartesaghi et al. [BSMG05]
proposed an approach for generating hatching drawings based on
multiple images with fixed positions and angles to the camera. The
work of Son et al. [SLKL11] introduced the notion of feature-
oriented structure grids for directional stippling to determine the
position and orientation of rendering primitives. Xu et al. [XKM07]
presented a technique for procedurally generated two-tone papercut
designs with guaranteed connectivity. For an extensive overview of
artistic stylization techniques, we refer to the state-of-the-art report
by Kyprianidis et al. [KCWI13].

Several studies have been performed to evaluate the aesthetics
of stippling algorithms compared to human artists, as well as to
each other. Maciejewski et al. [MIA*08] compared hand-drawn
and computer-generated illustrations using image processing tech-
niques. Spicker et al. [SHL*17] investigated if the perceived ab-
straction quality of stipple illustrations is related to the number of
stipples using a crowd-sourced user study. A comprehensive study
of digital stippling was done by Martin et al. [MARI17].

While our approach is able to generate similar results to some of
the work above (e.g. line-based halftoning), we specifically focus
on the physical realization of the stylized image, and hence must ac-
count for technical restrictions of a plotter that were not considered
in previous work. Furthermore, our system is based on a unifying

framework that allows for the creation of a wide range of styles as
well as the easy integration of new abstractions.

3. LinesLab System Overview

The LinesLab system was designed for users with the intent of
creating computational artworks with little programming knowl-
edge. Computational artists typically use dedicated software such
as Processing [Pro] to create their works. While such tools are very
flexible, they usually require the user to write the code from scratch,
and offer no support in finding suitable parameters for the visual
primitives. This can lead to a long trial-and-error process where the
user learns how to create appealing art through experimentation.
Our goal is to create a system that offers comparable flexibility for
the creation of monochrome line art or cut-out styles, while simul-
taneously reducing the user workload of finding suitable parameters
for the visual representations. Furthermore, we aim for a system
that is well suited for novice users, by allowing for the synthesis of
a wide range of artistic styles from a relatively small set of simple
basic modules that can be easily extended by the user.

To achieve these goals, we constructed the LinesLab system as
a set of exchangeable plug-ins for style selection. An overview of
our system is depicted in Figure 3, with arrows annotating the in-
formation flow in the system. The orange boxes denote user input
or user-defined processing steps. To create an artwork in a partic-
ular style, the user has to select the target medium, as well as the
medium size and encodings for the shape and positions of the vi-
sual primitives. The LinesLab system automatically optimizes the
visual primitive parameters in a nested optimization loop to create
an artwork perceptually close to the input image, while following
constraints set by the plotter hardware.

Figure 3: Overview of our system. The user input is annotated with
orange boxes, and turquoise boxes illustrate the algorithm results.

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



4 S. Stoppel & S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

The first step in our system is style selection. This is the only part
of the system that actively involves the user. First, the user is required
to select the medium (drawing or cut-out), which defines a basic set
of global constraints for the optimization process. Next, the user can
define the style through a choice of positional encodings, such as pre-
defined positions on a regular grid or iteratively computed positions,
and shape encodings, such as circles, points or lines. Entirely novel
encodings can be added by creating new plug-in modules. If a new
encoding is introduced, the user has to denote which parameters
are to be optimized in the optimization loop and the range of the
parameter space. For example, parameters that define the density of
the samples or the size and shape of the primitive are natural choices
for the optimization. Our system is able to handle any function as
long as the output can be described by a set of curves. In addition,
the user is able to modify global settings such as the paper size,
viewing distance, pen tip width or maximum number of primitives.
As default values, the system uses a paper size of A4, with a viewing
distance of 1 m, a pen tip width of 0.5 mm and no upper limit on
the number of primitives.

The optimization process then proceeds as the execution of the
two nested optimization loops depicted in Figure 3. The outer loop
samples the style parameters and simulates the drawing process for
each of the samples. The inner loop then seeks to place primitives
and adjust their shapes such that they maximize image similarity
(and paper stability, in the case of cut-outs). During drawing simu-
lation, in the first step of the loop, a suitable position for a primitive
is found. In the case of pre-defined positions (e.g. primitive place-
ment on a fixed grid), the system computes the positions only once,
based on the current parameter settings. If the positions are com-
puted iteratively, the system evaluates if the new position would
violate the hard constraints, and computes a different position if it
does. In the next step, the shape of a primitive is computed according
to the local properties of the input image and the soft constraints.
After the position and shape of a primitive have been computed, the
system evaluates the resulting primitive for violations of the con-
straints. If the primitive fulfils all the constraints, it is added to the
drawing. If an upper limit for the complexity was specified by the
user, our system checks if this limit has been reached and terminates
the loop accordingly. If the limit has not been reached, our system
evaluates the coverage by the visual primitives. If a sufficient cov-
erage has been achieved, the drawing is considered to be finished
and the drawing simulation loop ends. The resulting drawing is then
evaluated against all previously generated samples in the outer loop.

In the following sections, we discuss the concept of the visual
encoding utilized in LinesLab and review the individual parts of
our system in detail. We provide examples of different styles and
explain their formulation as a pseudo-code in the results section.

4. Device Restrictions

Before focusing on the individual parts of the LineLab system in
detail, we want to briefly outline the possibilities and limitations
of a hobby plotter for visual representations, as these restrictions
directly affect the design choices of our system. A hobby plotter
is conceptually very similar to an XY-plotter with an on/off state
for the Z-axis. In contrast to common XY-plotters, where the draw-
ing instrument is moved freely in X- and Y-directions, most hobby

Figure 4: Connected lines are processed differently by a plotter
depending on the tool used. While the pen preserves the shape of
the input lines (left), the blade tool rounds up the edges to ensure
that the blade can rotate smoothly (right).

plotters move the blade or the pen along the X-axis only. The pro-
cessed medium is moved along the Y-axis. The working area of
hobby plotters is typically limited to the size of approximately
30 cm × 300 cm, where 30 cm is a natural constraint by the ma-
chine dimensions and 300 cm is a common artificial constraint of
the plotter software. Some techniques, such as those used for Paul
the Robot [TFL13], utilize process feedback of the current draw-
ing state. Because the processed medium is constantly moved in a
hobby plotter, it is not easily possible to track this process with a
camera and to use this information in a feedback loop. Therefore,
all commands for the plotter must be pre-computed.

Naturally, an XY-plotter processes its input as a collection of
paths. Many hobby plotters allow for two different processing tools:
a pen and a small freely rotating blade. While the path is unchanged
for the pen, the transitions between individual line segments are
rounded for the blade, as illustrated in Figure 4. This ensures that
the blade has enough space to rotate appropriately. Many methods
from computational aesthetics, such as hatching, employ varying
line thickness to emphasize darker regions. Such techniques are
not possible with a plotter, since a pen can only create a line with
constant width. Even sophisticated pens with line thickness varying
under pressure would not allow for varying lines, since the pres-
sure cannot be changed during the drawing process. Furthermore, a
hobby plotter is not able to draw filled forms. Instead, a collection
of narrowly spaced lines has to be created in order to approximate
filled regions. As a hobby plotter can only use one pen, or in some
cases two, the plotter is not able to use a palette of colours, and only
monochrome images are possible. The software used by conven-
tional plotters is targeted at designs with limited complexity. While
this is not a fundamental restriction of the hardware, for practical
reasons, our system can optimize the appearance of the drawings
with an upper limit on the complexity. In Table 1, we compare
existing approaches against the plotter restrictions and our require-
ments. In addition to the restrictions in the table, the high price
and limited availability of the hardware of existing custom solu-
tions are the primary reasons for targeting conventional home-use
plotters.

5. System Details

Having outlined the limitations of hobby plotters, we can discuss
the functionality of our system within those limits. As noted before,
our goal is a flexible system for the creation of a wide range of
monochrome line art and cut-outs. To reproduce a wide variety of
artistic styles, our approach aims to represent the tonal content of a
digital image using a set of generalized primitives. The basic strategy
for approximating the tonal content of the source image is then

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight



S. Stoppel & S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art 5

Table 1: A brief comparison of existing algorithm requirements and plotter restrictions.

Related work Visual feedback Complexity Line width Similarity option Scalability

E-David Optional No constraint as each stroke is
computed separately

Varying width possible Via visual feedback after
a set of strokes

Limited

Paul the Robot Required No constraint the pen movement
is updated on the fly

Constant line width No tonal optimization Limited

Conventional
plotter solutions

Optional No constraint due to successive
feed

Constant line width Varies with solution Limited

(a) (b)

Figure 5: Two examples of positional encoding: (a) Stippled image
and (b) triangulation of the stipple positions.

determined by a user-specified choice between a set of encodings
that control the subsequent global optimization process.

Many visual encodings exhibit a significant degree of overlap.
Grid halftone images, for example, are usually generated by placing
differently sized circles on a fixed grid. Often, only the grid will
vary for different styles while the encoding as circles stays fixed.
To avoid repetitive definition for the visual primitives and to further
reduce the encoding complexity, we split the definition of visual
primitives into two parts. Conceptually, our approach is a stroke-
based method, and we draw our inspiration from traditional line
art. Most drawing techniques consist of two main abstractions: the
position of a pen stroke and the drawn patterns. In fact, art students
often train their skills by restricting themselves to one specific ab-
straction. Following this concept, we distinguish between two basic
types of encodings for visual primitives: positional encoding and
shape encoding.

Positional encoding Positional encoding denotes all techniques
that recreate the original image with geometric shapes with vary-
ing positions, while the essential shape of the drawing primitive
stays fixed and is not dependent on the image intensity values. The
density of the primitives conveys the grey values of the image. A
stippled image, as shown in Figure 5(a), is the most basic example of
positional encoding. However, positional encoding can have more
complex forms, as shown in Figure 5(b), where primitive positions
are triangulated to create a new style.

Shape encoding By shape encoding, we denote techniques that use
a direct mapping of the image intensity in a local neighbourhood

(a) (b) (c)

Figure 6: Three examples of shape encodings: (a) Halftone im-
age, (b) amplitude-modulated halftoning and (c) width-modulated
halftoning realized as a paper cut-out. Note that the positions of the
graphical elements are fixed. The image is encoded through shape
difference only. Note that these images are best to be inspected on
a computer screen.

to a geometric property, such as size or orientation, on a fixed
position. Grid halftone images, as shown in Figure 6(a), are simple
examples of such direct encodings. However, shape encodings can
have various forms and the position of the encoded object does
not have to be aligned to a regular grid. In Figure 6(b), the input
image is encoded through an amplitude-modulated cosine function
on an Archimedean spiral. Another examples for shape encodings
are paper cut-out images, where the illustration is created by cutting
out segments of varying thickness from the paper, as shown in
Figure 6(c). The image intensity values are directly encoded as
thickness of the cut-out.

Design combinations Based on these two types of encodings, we
can proceed to generate new drawing styles by combining positional
and shape encodings. This allows us to express a large number
of different artistic styles as combinations of positional and shape
encoding with varying degrees of freedom. As illustrated in Figure 7,
most monochrome line art can be represented as a combination of
position and shape encoding with varying degrees of freedom for
each encoding. For instance, the images in Figure 5 can be seen
as combinations with a high degree of freedom for the positional
encoding and a low degree of freedom for the shape encoding.
In contrast, the images shown in Figure 6 have a high degree of
freedom in the shape encoding and a low degree of freedom in
the positional encoding. Likewise, it is possible to generate styles
that have a high degree of freedom in both positional and shape
encoding, and their exact weighting results in countless possibilities.
For example, combining positional encoding in the form of stippling
and shape encoding in the form of circles sizes yields a drawing as in

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight



6 S. Stoppel & S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

Pos

Shape

DashesStippling Circles

Spiral
Halftone

Grid
Halftone

Figure 7: Most drawing styles can be represented as a combination
of positional and shape encoding with varying degrees of freedom.
Designs with low degree of freedom in both encodings (grey area)
are not suitable for closely representing input images.

(a) (b)

Figure 8: Examples of a design combination: (a) The image is
encoded through the position and the size of circles. (b) The image
is encoded through position, orientation and length of straight lines.

Figure 8(a). Even expressive paintings, such as the works of Vincent
van Gogh, can be seen as combinations of positional encodings and
shape encodings, where the position, orientation and the size of
the brush stroke carry information about the colour and structure
of the depicted object. Inspired by Van Gogh’s style, we create
monochrome drawings as depicted in Figure 8(b). In this example,
the spatial encoding of stipples was combined with a shape encoding
of lines, where the orientation of the line is dependent on the local
variance in the input image.

5.1. Drawing simulation

As outlined before, we deconstruct the visual primitives into their
positional and shape encoding. In practice, the visual primitives are
computed in two stages. Our approach first generates a set of prim-
itive positions, which are subsequently assembled into shapes. As
a result, each visual primitive consists of a backbone, defined by
a sampled centreline of the primitive, and the primitive shape. The
backbone of each primitive is stored as a point list with arbitrary
length. When multiple primitives are present, a collection of lists is
utilized. Because the shape module always expects point lists as in-
put, the system allows to combine the position and shape encodings
arbitrarily. We illustrate how two different shape encodings use the
same backbone in Figure 9(a). Furthermore, point lists are highly
suitable for self-intersection tests and concavity estimation. In the

(a) (b)

Figure 9: (a) The primitive backbone always consists of a list of
points, but the actual shape of the primitive can be defined freely, for
example, as a cut-out or amplitude modulation. (b) The concavity
is measured by computing the distance from the primitive backbone
to its convex hull along a ray perpendicular to the backbone.

remainder of this section, we discuss the generation strategies for
the positions and shapes, respectively.

Position generation For the generation of primitive positions, our
system offers two basic strategies: they can either be pre-computed
or iteratively generated. For pre-computed positions, the user can
either choose from a set of predefined functions or define a new
function that covers the canvas with a set of points or curves defining
the backbones of the primitives. A positional encoding module can
either output a set of positions directly, or generate curves that are
then automatically sampled by our system, following the restriction
on maximum number of elements (if such as restriction has been
specified). The final point positions are used in the shape generation
either as centre points of the primitives or in a user-defined way. The
positions are stored in a list or in a collection of lists. For instance, a
single list of points on a spiral as the centre of amplitude modulated
line would create an image, as shown in Figure 6(b), while as a
collection of lists can be used for a cut-out as in Figure 16(b),
where each list stores the points along the primitive centreline. Our
system evaluates each list with respect to intersection and aborts
the computation if the backbones of the primitives already intersect
each other. This ensures paper stability for cut-outs and prevents
overlapping elements during the drawing process, which lead to
dark spots in the drawing. In the case of paper cut-outs, our system
additionally determines how concave the backbone of the visual
primitive is. A highly concave primitive can lead to unstable results
that cannot be hanged freely. To measure the concavity, we compute
the maximum distance between the primitive’s backbone and its
convex hull, as shown in Figure 9(b). If the system detects elements
that exceed the degree of concavity that can be handled by the output
device, they are discarded to prevent the generation of mechanically
unstable results.

Many artistic techniques are best modelled with an iterative com-
putation of primitive positions. This design is not only a natural
choice, but also allows us to effectively simulate the drawing pro-
cess on the computer and thus to optimize the drawing parameters.
To allow for efficient operation while providing a simple interface,
we utilize a simple strategy for modules that use iterative position
computation, as illustrated in Figure 10. Essentially, we create a
copy of the input image that functions as canvas. In this copy, the
system finds the position of the darkest pixel, computes a primitive
at that position and adds the primitive in white colour to the input

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight



S. Stoppel & S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art 7

Figure 10: An example of incremental position encoding. The sys-
tem creates a copy of the input image (top left). The copy is blurred,
a primitive is computed at the darkest pixel of the blurred image
(top middle). A bigger primitive with the same orientation is added
to the initial copy (top right). This process is iterated (lower row).

image copy. To account for the perceptual error, the image copy is
blurred with a Gaussian kernel. We discuss the kernel size com-
putation in Section 5.2. Each computed primitive is evaluated for
constraint violation, such as intersections for the paper cut-outs. If
the primitive violates any constraints, it is discarded and not added
to the drawing simulation. However, the centre position of the prim-
itive is still marked in the image copy, to ensure that this position is
not selected again. If the total value of the remaining darkest pixel
lies above a user-specified threshold (we use the value of 0.95 as a
default and for all the results presented in this paper) or the maxi-
mum number of primitives is reached, the drawing is considered to
be finished and the drawing loop ends.

Shape generation The shape of the primitives can either be encoded
through a set of predefined functions or via a user-defined function.
Typical encodings consist of a shape variation around the generated
backbones, such as a variation of circle size or amplitude variation,
which directly encodes the image intensity, but it is equally possible
to use derivative information, e.g. to steer the direction of strokes. In
Figure 16(b), we show a typical shape encoding for a cut-out style.
The cut-out is represented by a polygon that is symmetric along
the backbone axis with the width encoding the grey values. In the
case of cut-outs, the system also computes the distance between the
visual primitives—based on a material simulation, we discard all
results that have a distance below 1.4 mm between the primitives,
as those are likely to tear.

5.2. Optimization

The goal of our system is the generation of line art or cut-outs from
any image input and we provide a flexible plug-in-based architec-
ture that allows for the combination of different types of positional
and shape encodings. However, finding good parameters for these
encodings can be a challenging task that typically results in a trial-
and-error approach. While greedy algorithms for tonal reproduction
can generally achieve good results for the generation of drawings
based on a given set of fine-tuned input parameters, their results
are heavily affected by these inputs (e.g. thresholds or parameter
ranges). This task becomes even harder when the artistic style has

(a) (b) (c)

(d) (e) (f)

Figure 11: Intermediate results of the optimization process for the
dashes style. In this particular style, the length of the dashes and the
thickness of control primitive, as shown in Figure 10, are optimized.
(a) shows the input image. (b)–(f) depict intermediate results of the
optimization process.

to scale with the medium, as the parameters do not necessarily
scale linearly with the medium size. Often, artists create drawings
with an intended viewing distance, and following this idea, we also
want to be able to globally indicate a desired distance instead of
individually controlling the various parameters of the individual en-
codings. We therefore set up our approach as a meta-optimization
procedure, where the process of creating an individual drawing is
steered by a second optimization loop that seeks to optimize its
parameters.

Typically, the visual primitives parameters affect one another;
hence, the similarity between the input image and the simulation
result tends to be highly non-convex over the parameter space. This
imposes a challenge for many gradient-based algorithms, as they
tend to get stuck in local minima. To overcome this challenge, we
use a greedy algorithm that iteratively samples the parameter space.
To reduce the number of simulations but still sample the space
uniformly, we use Latin hypercube sampling in our system, and
simulate the drawing for each parameter setting. In each iteration,
the optimizer finds the parameter setting that generates a drawing
closest to the input image and then refines the sampling in a local
neighbourhood reduced by the common factor of

√
2 around the

current best sample. Per default, we stop the refinement after N = 8
iterations or if

δn+1

δn

> 0.99, (1)

where δn is the minimal difference between the simulated image
and the input image in the nth iteration. This means that we stop
the optimization either after the search space was reduced to ap-
proximately 6% of the initial parameter space or the optimization
improves by less than 1%. While these values can, of course, be
adjusted, we found that they provide robust results and all the im-
ages in this paper were generated with these settings. In Figure 11,
we show the intermediate results during an optimization process.
One can see that the initial guess in Figure 11(b) does not rep-
resent the input image well. The second iteration in Figure 11(c)
overcorrects the image and makes it too dark. In the following

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight



8 S. Stoppel & S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

(a) (b) (c)

Figure 12: Results of drawing simulations optimized for a sheet of
A3 format viewed from a distance of (a) 1 m, (b) 2 m and (c) 4 m.

iterations in Figures 11(d)–(f), the input image is depicted more
faithfully.

We compute the differences between the simulated drawing and
the input image by rasterizing both and computing the normalized
mean square difference between them. We choose this rather sim-
ple metric because it is less sensitive to the structural differences
between the input image and the generated primitives. Furthermore,
our system does not create the typical failure cases for the mean
square error metric, such as transformed images or colour shift. As
a drawing can only be an approximation of the input image, it is in-
feasible to compute the differences directly. Instead, both images are
scaled to be of the same size and filtered with a Gaussian filter. By
adapting the kernel size of the Gaussian filter, we can optimize the
similarity of the drawing and the input image based on the desired
viewing distance. The visual acuity of a normally sighted person is
defined through a visual angle of 1 arc minute[CK15]. This means
that a person with normal sight would be able to identify an iso-
lated object of the size of approximately 1 mm from a distance of
3 m. However, this is the smallest object an average human could
recognize with the naked eye. A study performed by Crété-Roffet
et al. [CRDLN07] indicates that humans hardly perceive blur gen-
erated with a Gaussian kernel with the size of 1 mm from a 1 m
distance. Using this information, we can optimize the similarity of
the drawings dependent on the distance by using an appropriate
kernel size. More precisely, we can directly compute the kernel size
k of a Gaussian filter to optimize the visual similarity from a fixed
distance with the following formula:

k = ceil

(
hI (px)

hP (mm)
· dP,V (m)

)
, (2)

where hI is the height of the scaled input image and simulated image
in pixels, hP is the height of the physical drawing in millimetres and
dP,V is the distance between the viewer and the physical drawing in
metres. Using this formula, we compute the appropriate kernels for
drawings of size A4 and A3, for an image scaled to 1500 px height
during the computation, viewed from 1 m distance as 5 and 7,
respectively. In Figure 12, we compare the results of our simulation
for a drawing of size A3 optimized for the viewing distance of 1,
2 and 4 m, respectively. In Figure 13, we show close-ups of the
lower right corner of these drawings. One can notice that high-
frequency details become less and less preserved as the distance
increases.

(a) (b) (c)

Figure 13: Close-up on an image depicting drawing of a fabric. The
drawing was optimized for a viewing distance of (a) 1 m, (b) 2 m
and (c) 4 m. One can see that the high-frequency changes disappear
with the distance.

Figure 14: We parallelize the primitive generation by subdividing
the image into a set of tiles, where the primitives are computed.

6. Implementation and Performance

Our system was implemented in Python 3.6 using CUDA, OpenCV
and DXFWrite. CUDA was used to parallelize the drawing sim-
ulation, OpenCV is a library mainly aimed at real-time computer
vision that was used for efficient image operations and DXFWrite
was used to export the drawing paths as dxf files that can be read by
conventional plotter software. We minimize the computation time
by computing the primitives in parallel on the graphics processing
unit (GPU). For shape encodings where the positions of all primi-
tives are fixed, we compute the shape of all primitives in parallel.
Hence, the computation time for purely shape-encoded styles lies
within a few milliseconds. To reduce the synchronization overhead
required for the parallelization of iterative positional encodings, we
subdivide the image into overlapping tiles (Figure 14) which are
then computed in parallel. This process is performed in the follow-
ing manner: First, we subdivide the image into tiles that have at least
a pairwise distance of twice the size of the largest primitive. This
ensures that no primitives are in conflict (Figure 14, left). Then, the
tiles are shifted as shown in the subsequent images in Figure 14 and
the computation is repeated in each step.

The subdivision into tiles not only allows for parallel computa-
tion, but also results in an overall speedup as only a limited area has
to be evaluated. This simple strategy leads to a performance increase
by a factor of approximately 380 compared to the naive approach. In
our experiments, only the circle and the single-line style exceeded a
computation time of 2 s due to their serial structure. On average, the
remaining styles take around 0.5–1 s to generate an image. Table 2
lists the computation times for the results presented in the paper. For
completeness, we also include the production times as measured on
a Silhouette Studio plotter.

Because the primitive positions are computed by evaluating the
image row by row, the primitives tend to accumulate at the right and
the lower border of the tiles. This can potentially introduce undesired
artefacts. To minimize these artefacts, the computation is performed

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



S. Stoppel & S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art 9

Table 2: A brief comparison of existing algorithm requirements and the
plotter restrictions.

Style Figure Computation time Production time

Stippling 5(a) 0.67 s 96 min
Triangulation 5(b) 0.72 s 84 min
Spiral 6(b) 0.01 s 47 min
Cut-out 16(b) 0.09 s 56 min
Dashes 17 1.70 s 92 min
Circles 18(b) 4.76 s 87 min

(a) (b)

Figure 15: A comparison of a drawing computed as whole (a)
and with tiles (b). Illustration (a) took 741 s to compute, while
(b) took 1.43 s to compute. Qualitatively, the results are almost
undistinguished.

for a small range of grey values, i.e. we subdivide the computation
into n steps and in the kth step compute the primitives up to k

n
image

intensity. This leads to much more evenly distributed primitives as
the primitives of the neighbouring tiles cover parts of the right and
lower tiles borders in each iteration. In practice, we found that n = 5
provides results with no visible artefacts. In Figure 15, we show a
comparison between an illustration computed as whole (a) and one
computed with tile subdivision (b). The illustration in Figure 15(a)
took 741 s to compute, while the one in (b) took 1.43 s. The resulting
images are indistinguishable to the naked eye.

7. Results

To generate a drawing, the user has to select a module for the posi-
tional and shape encoding. Conceptually, these modules are realized
as functions in a catalogue, to which the users can add own func-
tions as well. To define a style, the user needs to select at least one
positional and one shape encoding. Currently, the LinesLab system
provides 11 different positional encodings, such as fixed patterns or
iterative encodings for the stippling and dashed style, and 17 shape
encodings, such amplitude modulation or triangulation of points. If
desired, the user can add further encodings by adding the function
calls for positional and shape encodings. We provide pseudo-code
of the used modules to illustrate their functionality for the following
examples. When two modules are selected, our system loads two
stored lists with the upper and lower bounds of the used parameters.
Therefore, if users create a new module, they also need to define
a possible range for the used parameters. However, the parameter
ranges can also be overridden prior to the optimization process. This
information is then sent to the optimizer function, which samples
the parameters and calls the drawing simulation function for each

(a) (b)

Figure 16: (a) Cut-out portrait by Yoo Hyun. (b) Cut-out generated
with our system.

parameter setup. The drawing simulation function calls the posi-
tional encoding and shape encoding functions. After each primitive
computation, LinesLab evaluates the result for constraint violation.
To generate the upcoming result, the setup of our system requires
the following Python code:

img = cv2.imread(’input.jpg’)

drawing = dxf.drawing(’output.dxf’)

min_dimension = 1200.0 # set canvas size

# set tonal coverage threshold

# for iterative generation

max_darkness_threshold = 0.95

# define tile_size for parallelization

tile_size = 200

# define limit of primitives, set to inf if not

given num_prim = 10000

#test for intersection concavity

intersec = True

concavity = False

# Add positional and shape encodings.

pos_enc = ["hering_bone"]

shape_enc = ["cut_out"]

# Define upper and lower bounds of the

# optimized parameters.

# When left empty a preset is loaded.

UB = []

LB = []

LinesLab_opt(pos_enc,shape_enc,UB,LB,intersec,

concavity)

Paper cut-outs The Korean artist Yoo Hyun[Yoo] creates breath-
taking portraits of celebrities by carefully slicing away thin slivers
of paper. In this way, he forms a woven zigzag pattern contained
inside a solid frame, as shown in Figure 16(a). With our system, we
are able to recreate the same style by choosing a similar positional
encoding as Hyun, a regular tiled grid, and a shape encoding that
translates the darkness values into line thickness. The pseudo-code
of the encodings is shown in Algorithms 1 and 2.

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Sticky Note
1) To generate a drawing, the user has to select a module for the positional and shape encoding.
2) To define a style(your own), the user needs to select at least one positional and one shape encoding.
3) When two modules are selected, our system loads two
stored lists with the upper and lower bounds of the used parameters.
4) This information is then sent to the optimizer function, which samples
the parameters and calls the drawing simulation function for each parameter setup.
5) The drawing simulation function calls the positional
encoding and shape encoding functions.
6) After each primitive computation, LinesLab evaluates the result for constraint violation


mmeher
Highlight



10 S. Stoppel & S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

Algorithm 1. Positional encoding for the cut-out style

Cutout positional encoding
input : number of divisions: nx, number of cut lines per

division: ny, angle of the cutout: α
for cx in range (0, nx) do

for cy in range (0, ny) do
compute the start and endpoints pS, pE for

alternating primitive backbones
end
primitives.add([pS, pE])

end
return primitives

Algorithm 2. Shape encoding for the cut-out style

Cutout shape encoding
input : thickness of the cutout: th, sampling distance: d,

primitive backbone containing pS and pE: p
compute primitive length pL
ns = pL/d
for s in range (0, ns) do

pos = pE * s/ns + pS * (ns-s)/ns
br = (1-img(pos))
primitiveThickness = br * th

end

The positional encoding essentially creates a herringbone pat-
tern. LinesLab automatically optimizes the encoding parameters to
create a result with the highest tonal similarity to the input image
while ensuring paper stability by restricting the distance between
the cut-outs to at least 1.4 mm. The result of our cut-out is shown in
Figure 16(b). In contrast to Yoo Hyun, our system leaves small strips
of paper between the segments to ensure the stability of the paper
while cutting. Hyun spends tens of hours creating such portraits.
Using our system, we are able to create the cut-out in just over 45
min (including the production time).

Dashes style Inspired by Van Gogh, we created an image com-
posed of short dashes in the direction of lowest variance. In this
style, the positional encoding is performed iteratively as described
in Section 5.1 and can be formulated as shown in Algorithm 3.

Algorithm 3. Pseudo-code of positional encoding for the dashes
style

Dashes positional encoding
input : input image with all existing primitives marked

white: img
p = minLoc(img)
mark primitive in img
return p

The shape encoding is done by sampling a line at each generated
position and choosing the direction of the sample with the lowest
variance along the line. We describe the shape computation with
the pseudo-code shown in Algorithm 4. For this style, only the
maximum length of the primitives was declared as an optimization
parameter and is determined in the outer optimization loop. For

(a) (c)(b)

(d) (f)(e)

Figure 17: Examples of a drawing on different medium sizes and
viewing distances. The first row shows the medium size and viewing
distance in proportion to an 1.8 m high man, while the lower row
depicts photographs of the corresponding drawings. The drawing
in (d) is 35×50 mm big, while the drawings in (e) and (f) have the
size 210 × 297 mm and 297 × 420 mm, respectively.

instance, for an image of size A4 drawn with a pen of 0.5 mm
thickness and a viewing distance of 1 m, the resulting value of the
maximal line length is 4 mm. Three results generated in this style
are shown in Figure 17. The respective photographs were taken at
the optimized distance for each image. The leftmost drawing has a
size of 3.5×5 cm and is optimized for a viewing distance of 20 cm,
the middle image is 21×29.7 cm big and is optimized for a viewing
distance of 120 cm, and the rightmost image measures 29.7×42 cm
and is optimized for a viewing distance of 170 cm.

Algorithm 4. Shape encoding for the dashes style. For each prim-
itive, the system finds the direction of the lowest variance around
that point and draws a line in that direction encoding the image
brightness with the line length

Dashes shape encoding
input : input image: img, primitive pos: p, maximal

primitve length: mL, number of radial samples: ns
lowVar = +inf
for s in range (0, ns) do

a = s * pi/ns
pS = [p.x + mL/2 * sin(a),p.y + mL/2 * cos(a)]
pE = [p.x - mL/2 * sin(a),p.y - mL/2 * cos(a)]
var = measure variance in img from pS to pE
if var <lowVar then

lowVar = var
aa = a

end
end
pL = (1-img[p]) * mL
pS = [p.x + pL/2 * sin(aa),p.y + pL/2 * cos(aa)]
pE = [p.x - pL/2 * sin(aa),p.y - pL/2 * cos(aa)]
return (pS,pE)

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight



S. Stoppel & S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art 11

(a) (b)

Figure 18: (a) Circles drawing by Màrton Jancsò and (b) drawing
generated by our system.

(a) (b)

Figure 19: Crosshatching drawing made with the LinesLab system.
(a) The illustration is drawn on paper. (b) The same illustration
etched on Medium-density fibreboard (MDF) with a laser cutter.

Circle style Many artists use familiar shapes to create complex
portraits. Màrton Jancsò, for example, created a portrait composed of
only circles, as shown in Figure 18(a). Our system is able to recreate
this style with the above-mentioned iteratively computed positional
encoding in Algorithm 3 with circles as primitives. The marked
circles are computed using the image brightness and a minimum
and maximum radius as input parameters. Our system stores the
centre points of the circles as the primitive backbones. Next, to
draw the circles in a space filling manner, the backbones are send to
a build in function that computes a Voronoi diagram of the primitive
positions and finds the largest fitting circle for each cell. A drawing
made by our system is depicted in Figure 18(b). As can be seen,
our approach tends to leave blank spaces between the circles in
very bright areas and at areas close to the border. This is due to the
elongated shape of the Voronoi cells that occurs more often at the
image border.

Crosshatching style Creating drawings with crosshatching tech-
niques originated in the middle ages and was perfected by Albrecht
Dürer. It is still a popular technique for artists in modern days. The
main concept of crosshatching is that the quantity, thickness and
spacing of lines depicts the brightness of the image. As mentioned
in Section 4, we cannot change the line thickness during the draw-
ing process. Therefore, to recreate a convincing crosshatching style,
only the line quantity and spacing can be adjusted in LinesLab.
A crosshatching drawing made using our system can be seen in
Figure 19(a). This illustration was created with two function calls
for the positional encoding and two function calls for the shape
encoding. The shape encoding function consisted of straight lines

connecting the backbones. The first positional encoding function
computes the prominent contours in the image with a Canny edge
detection algorithm, which is part of our function library. In the
second positional encoding, the image is quantized to five inten-
sity levels. For each of the levels, the algorithm then fills in the
corresponding areas with crosshatching lines. To create a natural
appearance, we add noise to the start- and endpoints of each line.
The system then optimizes the length of the lines, the distance be-
tween the lines for each tone and the noise level. The pseudo-code
for the positional encoding is shown in Algorithm 5. Our system
can be directly applied to other media as well. In Figure 19(b),
we show the same illustration engraved with a laser cutter on a
medium-density fibreboard.

Algorithm 5. Positional encoding for the crosshatching style

Crosshatching positional encoding
input : input image: img, line angle: a, distance between

lines: d, maximal line length: l
postImages = posterize(img,5) // returns 5 binary images

encoding the posterized are as 1 and background as 0
canStartLine = True
canEndLine = False
for pImg in postImages: do

for x in range (0,img.w) do
for y in range (0,img.h) do

if canStartLine and pImg(x,y) == 1 then
begin line
canStartLine = False
canEndLine = True

end
if canEndLine and (pImg(x,y) == 0 or

lineLenght > l) then
end line
draw line
canStartLine = True
canEndLine = False

end
end

end
end

Single-line style Artwork created with a single line ranges from
abstract minimalist drawings to highly detailed portraits. We can
realize a single-line style in our system by using the same positional
encoding as for the stippling style (Algorithm 3). Then, in the shape
encoding, we choose a random point and declare this point as the
line ending. We compute the five nearest points to the endpoint and
randomly choose one as the next point. This process is repeated
until all points have been processed and the line can be drawn.
We show a result of this style in Figure 20. The only optimized
parameter for this style is the size of the marker in the positional
encoding. We increase the performance of finding the closest prim-
itives by considering only primitives in the adjacent cells. Due to
the iterative structure, this style is rather slow to compute and one
simulation for a drawing on a A3 canvas can take several minutes.
Therefore, the optimization process for this style was performed
overnight. However, once the optimization process is performed, the

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight



12 S. Stoppel & S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

Figure 20: Single-line drawing, created by connecting the positions
of a stippled image with a single line.

(a) (b)

Figure 21: (a) Grid portrait by Katherine Cahoon. (b) Grid portrait
generated with our system.

parameter settings can be stored and retrieved again for a different
drawing.

Mosaic style A popular task for art students is to create portraits on
a regular grid. The portrait by Katherine Cahoon in Figure 21(a) is
an example of this style. With our method, we are able to create such
a grid portrait by simply subdividing the input image into regular
tiles and processing the tiles individually with a random style. The
result of this approach can be seen in Figure 21.

8. User Feedback

To gain feedback on the usability and utility of our approach, we
presented LinesLab to two computational artists with different levels
of programming experience. Both artists use Processing to create
their artworks, but the first artist has used Processing for several
years, while the second user has only experimented with it for
three months. We explained LinesLab to them and let them freely
explore the system with the possibility to ask questions at any point.
After the exploration phase, we asked both artists to add a new style
to the system. Finally, we asked them to comment on LinesLab and
its usability.

Experience with programming languages was beneficial for the
first artist in terms of required learning time and in implementing
new encodings. The first artist spent 34 min in the exploration
phase, while the second artist needed 78 min to fully understand

(a) (b)

Figure 22: (a) A new hexagonal style created by an artist with long
strong programming skills. (b) A halftone style create by an artist
with limited programming experience.

the entire functionality of the system. During the exploration
phase, both artists simulated different styles by exchanging the
positional and shape encodings, while investigating the code of the
used encodings. Both artists were able to create a new style in our
system. However, the first artist was able to implement a new style
within just under 20 min, while the artist with less programming
experience needed 37 min. We show the results of the two styles
in Figure 22. In Figure 22(a), the artist added a new positional
encoding in form of lines aligned in a hexagonal pattern, which were
superimposed with the existing amplitude modulation function.
LinesLab automatically optimizes the spacing inside the hexagon
as well as the sampling rate and the amplitude of the modulation
function. In Figure 22(b), the artist used an existing positional
encoding (regular grid), and then created a star pattern for each
primitive. For this style, our system optimizes the spacing between
the primitives and the length of the drawn line in the star pattern.

After the hands-on phase, we asked the two artists to comment
on the usability of our system, features they liked and disliked, and
if they would consider using our system in the future. With respect
to usability, both artists said that the functionality of the system
can be understood fairly easily through experimentation with the
different encoding functions. When asked to comment on features
they liked, the first artist replied: ‘I especially like the separation be-
tween shape and positional encodings. This really makes it easy for
me to experiment with different style combinations. Furthermore, it
forces me to mentally decompose my ideas for a style, which makes
it easier to translate them into code later on’. The second artist
noted: ‘The automatic parameter tuning is really helpful. I would
still change the parameters a bit to get the result I had in mind,
but the automatic tuning drastically reduces the testing time’. When
asked about any annoyances or features of dislike, the second artist
replied: ‘It confused me that some styles were computed almost
instantly while some took a bit longer. Maybe having a progress bar
would be good’. Both artists mentioned that a drag and drop inter-
face for the encodings would make the exploration of the system
easier. Nonetheless, both artists said they would appreciate to use
our tool in the future. The first artist said: ‘I would absolutely use
this tool, but mostly to create a basis on which I can work in other
programs such as Illustrator or Inkscape’. The second artist replied:
‘Yes, I would use this tool. I think it would save me a lot of time.

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



S. Stoppel & S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art 13

For me it is much faster to create good results in this tool than in
Processing, because I can easily reuse old styles and I get to see
good results without tuning all the parameters’.

9. Discussion

The creation of physical drawings or cut-outs can have unexpected
and unwanted artefacts that we normally do not encounter when only
dealing with digital images. For instance, the pen may not distribute
the ink evenly resulting in too light or too dark areas. Similarly, a
blade can wear off and tear the paper instead of producing a clean
cut. In our experience, such issues can be minimized by reducing
the speed of the plotter, allowing for a more even distribution of ink
and lower the forces on the paper. Another way to avoid excessive
ink leakage of a pen is to use strongly absorbing paper, such as
Aquarelle paper.

To ensure paper stability, we simulated the stress of a paper sheet
during the cutting process and the deformation of the paper after
the cutting and incorporated the results as global parameters of our
system. The simulation was performed in ANSYS, where the paper
was approximated as a thin sheet of custom material based on wood
with its tensile strength and density changed to the values of paper.
The result of the simulation was that the stress during cutting is
negligible, if the cutting paths have at least 1.4 mm distance between
them. Furthermore, we simulated the deformation of hanging paper
cut-outs fixed on the upper corners. The simulation showed that the
deformation is minimized when the cutting pattern follows vertical
lines or lies within an angle of 14 and 46 degrees. While such a
simulation can only provide guidelines for the cutting process, we
still see such results as valuable for the design of our system and
hope to incorporate further results in the future. In fact, we could
confirm that the paper often tore when the distance between cutting
paths fell below 1.4 mm.

At present, we use a rather simple optimization process of refining
around the best result of the current iteration. While this approach
has proven to be effective, more complex optimizers could be eas-
ily integrated, as our system is completely modular in this respect.
While we deliberately targeted off-the-shelf hobbyist plotting and
cutting devices in the development of our system, there are no fun-
damental restrictions that would prevent its use for professional
devices. In fact, we tested our system on industrial laser cutters,
as can be seen in Figure 19. In the future, we plan to experiment
with professional vinyl cutters that can be used for large-scale draw-
ings with only moderate expenses. The current implementation of
LineLab provides a function-based interface. We plan to extend the
usability by providing a simple drag and drop functionality to fur-
ther simplify experimentation. Currently, if a user aims to add a new
style to the system, he needs to define the corresponding positional
and shape encoding functions. Inspired by the advances of deep
neural networks, we see a promising direction for future work in
automatic style extraction from exemplar images.

Despite its modularity and the simplicity of our optimization
process, our system is still able to closely recreate the results of
specialized approaches. For instance, we were able to create similar
results to Chiu et al. [CLLC15], by computing the positions as
stippling points first and constructing a backbone path through them
with a TSP solver. The shape encoding was done through a trochoid

(a) (b) (c)

Figure 23: (a) Scribble art generated by a method proposed by
Chiu et al., (b) input image and (c) scribble art generated with our
system.

function, which is a curve defined by a fixed point on a rotating
circle travelling along a line. The optimized parameters were the
mapping parameters that computed the rotation speed and circle
radius from the local image intensity. The comparison of our result
and the result by Chiu et al. can be seen in Figure 23. Clearly, our
formulation cannot exactly reproduce the tonal quality of a highly
specialized approach. However, this example shows the strength of
our system in being able to produce high-quality results with a much
simpler setup.

10. Conclusion

We presented a novel system capable of creating line art and cut-
outs with conventional hobby plotters and cutting machines. Our
approach is flexible and modular, supporting a wide range of artistic
styles generated from a basic set of position and shape encodings.
By employing a nested optimization process, we are able to auto-
matically generate artistic results that conform to the physical and
mechanical constraints of the output devices. To the best of our
knowledge, our system is the first one that optimizes the generated
drawings based on the distance of the viewer to the artwork itself,
while maintaining scalability with respect to the medium size. We
achieve results comparable to existing works of art that can be easily
reproduced with off-the-shelf hardware. Furthermore, our architec-
ture features a simple plug-in mechanism, which allows the easy
addition of new styles.

Acknowledgements

The research presented in this paper was supported by the MetaVis
project (#250133) funded by the Research Council of Norway.

References

[AD16] AHMED A. G. M., DEUSSEN O.: Amplitude modulated line-
based halftoning. In Proceedings of Computer Graphics and Vi-
sual Computing (2016), pp. 41–43.

[Ahm14] AHMED A. G. M.: Modular line-based halftoning via recur-
sive division. In Proceedings of Workshop on Non-Photorealistic
Animation and Rendering (2014), pp. 41–48.

[Ahm15] AHMED A. G. M.: From stippling to scribbling. In Proceed-
ings of Bridges: Mathematics, Music, Art, Architecture, Culture
(2015), pp. 267–274.

[BSMG05] BARTESAGHI A., SAPIRO G., MALZBENDER T., GELB

D.: Three-dimensional shape rendering from multiple images.
Graphical Models 67, 4 (2005), 332–346.

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



14 S. Stoppel & S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

[CAO09] CHANG J., ALAIN B., OSTROMOUKHOV V.: Structure-aware
error diffusion. In SIGGRAPH Asia (2009), pp. 162:1–162:8.

[Car] Caravaggio. http://caravaggio-a-drawing-machine.webnode.
it/. Accessed: 27 July 2017.

[CEB05] CALINON S., EPINEY J., BILLARD A.: A humanoid
robot drawing human portraits. In Proceedings of Interna-
tional Conference on Humanoid Robots (2005), pp. 161–
166.

[CK15] CARLSON N. B., KURTZ D.: Clinical Procedures for Ocular
Examination. McGraw-Hill Education, New York, 2015.

[CLLC15] CHIU C.-C., LO Y.-H., LEE R.-R., CHU H.-K.: Tone-
and feature-aware circular scribble art. In Proceedings of Pacific
Graphics (2015), vol. 34, pp. 225–234.

[CRDLN07] CRÉTÉ-ROFFET F., DOLMIERE T., LADRET P., NICOLAS

M.: The blur effect: Perception and estimation with a new no-
reference perceptual blur metric. In Proceedings of Electronic
Imaging Symposium (2007), pp. 6492–6503.

[Cri] Cricut. https://home.cricut.com/. Accessed: 22 May 2017.

[CVP08] COLTON S., VALSTAR M. F., PANTIC M.: Emotionally
aware automated portrait painting. In Proceedings of Digital
Interactive Media in Entertainment and Arts (2008), pp. 304–
311.

[DLPT12] DEUSSEN O., LINDEMEIER T., PIRK S., TAUTZENBERGER

M.: Feedback-guided stroke placement for a painting machine.
In Proceedings of Symposium on Computational Aesthetics in
Graphics, Visualization, and Imaging (2012), pp. 25–33.

[DOM*01] DURAND F., OSTROMOUKHOV V., MILLER M., DURANLEAU

F., DORSEY J.: Decoupling strokes and high-level attributes for
interactive traditional drawing. In Proceedings of the 12th Euro-
graphics Conference on Rendering (2001), pp. 71–82.

[Fri] Frieder Nake. https://en.wikipedia.org/wiki/Frieder_Nake. Ac-
cessed: 22 July 2017.

[Geo] Georg Nees. https://en.wikipedia.org/wiki/Georg_Nees. Ac-
cessed: 22 July 2017.

[GKAK16] GALEA B., KIA E., AIRD N., KRY P. G.: Stippling with
aerial robots. In Proceedings of the Joint Symposium on Com-
putational Aesthetics and Sketch Based Interfaces and Modeling
and Non-Photorealistic Animation and Rendering (2016), pp.
125–134.

[Har] Harold Cohen Aaron. http://www.aaronshome.com/aaron/
aaron/index.html. Accessed: 22 July 2017.

[HHD03] HILLER S., HELLWIG H., DEUSSEN O.: Beyond stippling -
Methods for distributing objects on the plane. Computer Graphics
Forum 23, 3 (2003), 515–522.

[Jea] Jean Tinguely. https://en.wikipedia.org/wiki/Jean_Tinguely.
Accessed: 22 July 2017.

[Jes16] JESCHKE S.: Generalized diffusion curves: An improved vec-
tor representation for smooth-shaded images. Computer Graph-
ics Forum 35, 2 (2016), 71–79.

[JGKS15] JAIN S., GUPTA P., KUMAR V., SHARMA K.: A force-
controlled portrait drawing robot. In Proceedings of Industrial
Technology (2015), pp. 3160–3165.

[JJC*16] JUN Y., JANG G., CHO B., TRUBATCH J., KIM I., SEO S.,
OH P. Y.: A humanoid doing an artistic work - Graffiti on the
wall. In Proceedings of Intelligent Robots and Systems (2016),
pp. 1538–1543.

[KB05] KAPLAN C. S., BOSCH R.: Tsp art. In Renaissance Banff:
Mathematics, Music, Art, Culture (2005), pp. 301–308.

[KCWI13] KYPRIANIDIS J. E., COLLOMOSSE J., WANG T., ISENBERG

T.: State of the art: A taxonomy of artistic stylization techniques
for images and video. IEEE Transactions on Visualization and
Computer Graphics 19, 5 (2013), 866–885.

[LPD13] LINDEMEIER T., PIRK S., DEUSSEN O.: Image stylization with
a painting machine using semantic hints. Computer Graphics 37,
5 (2013), 293–301.

[MARI17] MARTÍN D., ARROYO G., RODRÍGUEZ A., ISENBERG T.: A
survey of digital stippling. Computers & Graphics 67 (2017),
24–44.

[MIA*08] MACIEJEWSKI R., ISENBERG T., ANDREWS W., EBERT D.,
SOUSA M., CHEN W.: Measuring stipple aesthetics in hand-drawn
and computer-generated images. IEEE Computer Graphics and
Applications 28, 2 (2008), 62–74.

[OH99] OSTROMOUKHOV V., HERSCH R. D.: Multi-color and artistic
dithering. In ACM SIGGRAPH (1999), pp. 425–432.

[PB96] PNUELI Y., BRUCKSTEIN A. M.: Gridless halftoning: A rein-
carnation of the old method. Graphical Models and Image Pro-
cessing 58, 1 (1996), 38–64.

[Pin] Pindar Van Arman. http://www.cloudpainter.com/. Accessed:
22 July 2017.

[PJJSH16] PRÉVOST R., JACOBSON A., JAROSZ W., SORKINE-HORNUNG

O.: Large-scale painting of photographs by interactive optimiza-
tion. Computers & Graphics 55 (2016), 108–117.

[PQW*08] PANG W.-M., QU Y., WONG T.-T., COHEN-OR D., HENG P.-
A.: Structure-aware halftoning. ACM Transactions on Graphics
27, 3 (2008), 1–8.

[Pro] Processing. https://processing.org/. Accessed: 20 February
2018.

[PS06] PEDERSEN H., SINGH K.: Organic labyrinths and mazes. In
Proceedings of International Symposium on Non-Photorealistic
Animation and Rendering (2006), pp. 79–86.

[Rem] The next Rembrandt, can the great master be brought back
to create one more painting? https://www.nextrembrandt.com/.
Accessed: 22 May 2017.

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

http://caravaggio-a-drawing-machine.webnode.it/
http://caravaggio-a-drawing-machine.webnode.it/
https://home.cricut.com/
https://en.wikipedia.org/wiki/Frieder_Nake
https://en.wikipedia.org/wiki/Georg_Nees
http://www.aaronshome.com/aaron/aaron/index.html
http://www.aaronshome.com/aaron/aaron/index.html
https://en.wikipedia.org/wiki/Jean_Tinguely
http://www.cloudpainter.com/
https://processing.org/
https://www.nextrembrandt.com/


S. Stoppel & S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art 15

[SBC06] SHUGRINA M., BETKE M., COLLOMOSSE J.: Empathic paint-
ing: Interactive stylization through observed emotional state. In
Proceedings of Symposium on Non-Photorealistic Animation and
Rendering (2006), pp. 87–96.

[SHL*17] SPICKER M., HAHN F., LINDEMEIER T., SAUPE D., DEUSSEN

O.: Quantifying visual abstraction for stipple drawings. In Pro-
ceedings of NPAR (2017), pp. 1–10.

[Sil] Silhouette America. https://www.silhouetteamerica.com/. Ac-
cessed: 22 May 2017.

[SLKL11] SON M., LEE Y., KANG H., LEE S.: Structure grid
for directional stippling. Graphical Models 73, 3 (2011),
74–87.

[TFL13] TRESSET P., FOL Leymarie F.: Portrait drawing by Paul the
robot. Computer Graphics 37, 5 (2013), 348–363.

[WLL*06] WEN F., LUAN Q., LIANG L., XU Y.-Q., SHUM H.-Y.:
Color sketch generation. In Proceedings of Symposium on Non-
Photorealistic Animation and Rendering (2006), pp. 47–54.

[XK07] XU J., KAPLAN C. S.: Image-guided maze construction. In
ACM SIGGRAPH (2007).

[XKM07] XU J., KAPLAN C. S., MI X.: Computer-generated pa-
percutting. In Proceedings of the 15th Pacific Conference on
Computer Graphics and Applications (2007), pp. 343–350.

[Yoo] HYUN Yoo. https://www.instagram.com/yoo.hyun/. Ac-
cessed: 22 August 2017.

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

https://www.silhouetteamerica.com/
https://www.instagram.com/yoo.hyun/



