
Volume 36 (2017), Number 2 pp. 1–14 COMPUTER GRAPHICS forum

LinesLab: A Flexible Low-Cost Approach for the Generation of
Physical Monochrome Art

S. Stoppel and S. Bruckner

University of Bergen, Norway

Figure 1: Artistic examples generated with our method. From left to right: Paper cutout, dashes drawing, single line spiral drawing, stippling,
triangulation drawing.

Abstract
The desire for the physical generation of computer art has seen a significant body of research that has resulted in sophisticated
robots and painting machines, together with specialized algorithms mimicking particular artistic techniques. The resulting
setups are often expensive and complex, making them unavailable for recreational and hobbyist use. In recent years, however, a
new class of affordable low-cost plotters and cutting machines has reached the market. In this paper, we present a novel system
for the physical generation of line and cutout art based on digital images, targeted at such off-the-shelf devices. Our approach
uses a meta-optimization process to generate results that represent the tonal content of a digital image while conforming to the
physical and mechanical constraints of home-use devices. By flexibly combining basic sets of positional and shape encodings,
we are able to recreate a wide range of artistic styles. Furthermore, our system optimizes the output in terms of visual perception
based on the desired viewing distance, while remaining scalable with respect to the medium size.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Early after the development of the computer, artists introduced
computational art as a new discipline. Mathematicians like Georg
Nees [Geo] and Frieder Nake [Fri] advanced computational art by
generatively creating complex geometric figures and drawing them
with an axial plotter on a paper canvas. As the technology ad-
vanced, the output devices for computational art became more com-
plex, such as industrial devices equipped with a multi-axial arm in
the case of e-David [LPD13] or sophisticated 3D printers that out-
put multiple layers of paint as used in The Next Rembrandt [Rem].

While these advances in technology are capable of generating re-
markable results, they rely on complex and expensive customized
hardware setups. Several manufacturers addressed the needs of
hobbyists and developed affordable axial plotters for home use. Al-
though these devices are more limited than their high-end counter-
parts (e.g., with respect to medium support and process feedback),
they are nonetheless capable of generating high-quality results at
often only a small fraction of the cost.

This new generation of hobbyist devices has given rise to a re-
newed interest in customized computer art for recreational purposes

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

S. Stoppel and S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

a b

Figure 2: (a) The pinup girl of SAGE, the first documented case of
computer generated art. (b) Schotter (1965), by Georg Nees – one
of the first physical drawings made with by a drawing machine.

that increasingly penetrates the mainstream. However, there is still
a lack of capable software that addresses the needs of this market,
providing a wide degree of stylistic choices, while simultaneously
taking into account the limitations of the available devices.

We present LinesLab, a flexible automated system that trans-
forms images into stylized drawings or cutouts, by creating a set of
commands that can be interpreted and performed by conventional
hobby plotters and cutting machines, such as Silhouette Studio [Sil]
or Cricut [Cri]. The main contribution of our work does not consist
of the individual styles, but of the modular automated framework
for the creation of monochrome line art and paper cutouts. Since
the LinesLab system is specifically targeted for hobbyist plotter se-
tups, we identify the limitations and capabilities of home-use plot-
ters and analyze the design space for line art and paper cuts. Based
on these constraints, we present a system that is capable of creat-
ing a wide variety of art-inspired styles while being scalable with
respect to the medium size. Our modular architecture supports the
synthesis and extension of new styles by combining sets of posi-
tional and shape encoding modules. Furthermore, being targeted at
the generation of physical artwork, our approach can optimize its
output based on the targeted viewing distance

2. Related Work

The areas of computational art and computational aesthetics have
been extensively studied over the years. Since we focus on physical
artwork, we first cover drawing machines in art and then continue to
discuss related work on non-photorealistic rendering methods and
image stylization.

Simple devices to support the drawing process were constructed
already in the early 15th century. Later automatic drawing ma-
chines that could produce complex geometric patterns with ease,
such as the Harmonograph, were introduced. Jean Tinguely [Jea],
for example, created a number of sophisticated drawing machines
with complex repeating stroke patterns. While these machines
could only generate fixed patterns, this changed with the devel-
opment of computers. The roots of computer-generated art can be
traced back to the late 1950s. The pin-up girl at the SAGE air de-
fense system, shown in Figure 2(a), was probably the first drawing
to appear on a computer screen. The term computer art was first
used by Edmund Berkeley in 1962, which inspired the first Com-
puter Art Contest in 1963. This annual contest propelled the de-
velopment of computer-generated art. Early pioneers of computer
graphics like Georg Nees [Geo] or Frieder Nake [Fri] used plotters

to create the first artworks that were constructed digitally and then
physically drawn by a machine (see Figure 2(b)). Over the subse-
quent years, a number of artists used machines to create artworks,
often of abstract nature.

In recent years, artists started to develop means for more realistic
machine-generated paintings. Harold Cohen [Har] built sophisti-
cated painting machines that could represent digital image content,
but his main focus was still on abstract art. Pindar Van Arman [Pin]
experimented with AI-controlled painting robots, collectively re-
ferred to as cloudpainter, to create original compositions. Tresset
and Fol Leymarie [TFL13] described Paul the Robot, a robotic in-
stallation for face drawings. A more general setup was achieved
with e-David, a feedback-guided painting robot, whose rendering
techniques were discussed by Deussen et al. [DLPT12] and Linde-
meier et al. [LPD13].

Galea et al. [GKAK16] presented a stippling method with fly-
ing quadrotor drones. Prévost et al. [PJJSH16] used an interac-
tive optimization process to guide the user in the creation of large
scale paintings with spray paint. Jain et al. [JGKS15] developed a
force-controlled robot that was able to draw on arbitrary surfaces.
A similar approach was taken by Jun et al. [JJC∗16], where a hu-
manoid robot capable of drawing on a wall was developed. Cali-
non et al. [CEB05] used existing tools to create a humanoid robot
to draw artistic portraits for entertainment purposes. Inspired by
these results, many hobbyists and developers created algorithms
and machines for drawing purposes. The project Caravaggio [Car]
by Michele Della Ciana is particularly noteworthy, as it served as
one of the inspirations for our work. Caravaggio is a custom-built
polargraph drawing machine that produces artwork composed of a
single continuous path. A single illustration created with this ap-
proach requires 12 to 24 hours to complete. One of our aims was to
reproduce the compelling results generated by this approach for ar-
bitrary digital images on simple and affordable consumer devices.

Research in the areas of non-photorealistic rendering and
computer-based image stylization are closely related to our work,
as they typically aim to reproduce different types of artistic tech-
niques or media. A common strategy to approximate an image is to
use stroke-based rendering such as brush stroke techniques. Most
of these techniques use low-level abstraction based on local im-
age properties, such as done by Wen et al. [WLL∗06] for color
sketch generation through a segmentation algorithm. In some ap-
proaches, the stroke placement is influenced by higher-level param-
eters. Shugrina et al. [SBC06] presented "empathic painting", an
interactive painterly rendering approach whose appearance adapts
to the emotional state of the viewer in real time. A similar approach
was taken by Colton et al. [CVP08], who developed a stroke-
based rendering algorithm which heightens the emotions of the
depicted person. Ostromoukhov and Hersch [OH99] used a multi-
color dithering approach to generate color images made of artis-
tic shapes. Many approaches convert a raster image into vector
graphics, such as work done by Jeschke [Jes16], who introduced
a generalized formulation for Diffusion Curve Images. Durand et
al. [DOM∗01] introduced an interactive system that supports the
user in the creation of drawings from photographs in a variety of
styles.

Our work instead focuses on monochrome styles such as halfton-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

S. Stoppel and S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

ing, stippling, or hatching. Pnueli and Bruckstein [PB96] were
among the first to discuss gridless halftoning techniques. Ahmed
et al. described two line-based halftoning techniques via recur-
sive division [Ahm14] and line amplitude modulation [AD16].
Ahmed [Ahm15] also addressed the general brightness/contrast
problem of line-based halftoning methods and proposed to use er-
ror diffusion as preprocessing step. Pang et al. [PQW∗08] presented
a structure-aware halftoning technique, that aims to preserve the
structure and tone similarities between the original and the halftone
images. Later, Chang et al. [CAO09] used an error-diffusion ap-
proach to create visually similar results as in the method by Pang
et al. but with significantly decreased computation time. Pedersen
and Singh [PS06] addressed the synthesis of organic maze struc-
tures, and Xu and Kaplan [XK07] discussed a set of algorithms for
designing mazes based on images. Kaplan and Bosch [KB05] de-
scribed how to construct drawings with a continuous line by solving
the traveling salesman problem. Chiu et al. [CLLC15] extended the
TSP algorithm to a tone- and feature-aware path creation method
for circular scribble art. Hiller et al. [HHD03] discussed general-
ized methods for computer-generated stippling by exploring prim-
itives other than points. Bartesaghi et al. [BSMG05] proposed an
approach for generating hatching drawings based on multiple im-
ages with fixed positions and angles to the camera. The work of Son
et al. [SLKL11] introduced the notion of feature-oriented structure
grids for directional stippling to determine the position and orien-
tation of rendering primitives. Xu et al. [XKM07] presented a tech-
nique for procedurally-generated two-tone papercut designs with
guaranteed connectivity. For an extensive overview of artistic styl-
ization techniques, we refer to the state of the art report by Kypri-
anidis et al. [KCWI13].

Several studies have been performed to evaluate the aesthetics
of stippling algorithms compared to human artists, as well as to
each other. Maciejewski et al. [MIA∗08] compared hand-drawn
and computer-generated illustrations using image processing tech-
niques. Spicker et al. [SHL∗17] investigated if the perceived ab-
straction quality of stipple illustrations is related to the number of
stipples using a crowdsourced user study. A comprehensive study
of digital stippling was done by Martin et al. [MARI17].

While our approach is able to generate similar results to some of
the work above (e.g., line-based halftoning), we specifically focus
on the physical realization of the stylized image, and hence must ac-
count for technical restrictions of a plotter that were not considered
in previous work. Furthermore, our system is based on a unifying
framework that allows for the creation of a wide range of styles as
well as the easy integration of new abstractions.

3. LinesLab System Overview

The LinesLab system was designed for users with the intent of cre-
ating computational artworks with little programming knowledge.
Computational artists typically use dedicated software such as Pro-
cessing [Pro] to create their works. While such tools are very flex-
ible, they usually require the user to write the code from scratch,
and offer no support in finding suitable parameters for the visual
primitives. This can lead to a long trial-and-error process where the
user learns how to create appealing art through experimentation.
Our goal is to create a system that offers comparable flexibility for

Hard constraints
Number of elements
Paper connectivity

Primitive Position
Computation

X Y

Primitive Shape
Computation

Parameter initialization
vs vs

Primitive added
to the drawing

Soft constraints
Image similarity
Paper stability

Optimization
vs vs

Style Selection
Medium Pos. enc. Shape enc.

Evaluate image
and primitive

vs

Figure 3: Overview of our system. The user input is annotated with
orange boxes, turquoise boxes illustrate the algorithm results.

the creation of monochrome line art or cutout styles, while simulta-
neously reducing the user workload of finding suitable parameters
for the visual representations. Furthermore, we aim for a system
that is well-suited for novice users, by allowing for the synthesis of
a wide range of artistic styles from a relatively small set of simple
basic modules that can be easily extended by the user.

To achieve these goals, we constructed the LinesLab system as
a set of exchangeable plugins for style selection. An overview of
our system is depicted in Figure 3, with arrows annotating the in-
formation flow in the system. The orange boxes denote user input
or user-defined processing steps. To create an artwork in a partic-
ular style, the user has to select the target medium, as well as the
medium size and encodings for the shape and positions of the vi-
sual primitives. The LinesLab system automatically optimizes the
visual primitive parameters in a nested optimization loop to create
an artwork perceptually close to the input image, while following
constraints set by the plotter hardware.

The first step in our system is style selection. This is the only
part of the system that actively involves the user. First, the user is
required to select the medium (drawing or cutout), which defines a
basic set of global constraints for the optimization process. Next,
the user can define the style through a choice of positional encod-
ings, such as predefined positions on a regular grid or iteratively-
computed positions, and shape encodings, such as circles, points
or lines. Entirely novel encodings can be added by creating new
plugin modules. If a new encoding is introduced, the user has to
denote which parameters are to be optimized in the optimization
loop and the range of the parameter space. For example, parame-
ters that define the density of the samples or the size and shape of
the primitive are natural choices for the optimization. Our system is
able to handle any function as long as the output can be described
by a set of curves. In addition, the user is able to modify global

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

S. Stoppel and S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

Figure 4: Connected lines are processed differently by a plotter
depending on the tool used. While the pen preserves the shape of
the input lines (left), the blade tool rounds up the edges to ensure
that the blade can rotate smoothly (right).

settings such as the paper size, viewing distance, pen tip width, or
maximum number of primitives. As default values, the system uses
a paper size of A4, with a viewing distance of 1 m, a pen tip width
of 0.5 mm, and no upper limit on the number of primitives.

The optimization process then proceeds as the execution of the
two nested optimization loops depicted in Figure 3. The outer loop
samples the style parameters and simulates the drawing process for
each of the samples. The inner loop then seeks to place primitives
and adjust their shapes such that they maximize image similarity
(and paper stability, in the case of cutouts). During drawing simula-
tion, in the first step of the loop a suitable position for a primitive is
found. In the case of predefined positions (e.g., primitive placement
on a fixed grid), the system computes the positions only once, based
on the current parameter settings. If the positions are computed it-
eratively, the system evaluates if the new position would violate the
hard constraints, and computes a different position if it does. In the
next step, the shape of a primitive is computed according to the lo-
cal properties of the input image and the soft constraints. After the
position and shape of a primitive have been computed, the system
evaluates the resulting primitive for violations of the constraints. If
the primitive fulfills all the constraints, it is added to the drawing. If
an upper limit for the complexity was specified by the user, our sys-
tem checks if this limit has been reached and terminates the loop
accordingly. If the limit has not been reached, our system evalu-
ates the coverage by the visual primitives. If a sufficient coverage
has been achieved, the drawing is considered to be finished and the
drawing simulation loop ends. The resulting drawing is then evalu-
ated against all previously generated samples in the outer loop.

In the following sections, we discuss the concept of the visual
encoding utilized in LinesLab and review the individual parts of
our system in detail. We provide examples of different styles and
explain their formulation as a pseudocode in the results section.

4. Device Restrictions

Before focusing on the individual parts of the LineLab system in
detail, we want to briefly outline the possibilities and limitations
of a hobby plotter for visual representations, as these restrictions
directly affect the design choices of our system. A hobby plotter
is conceptually very similar to an XY-plotter with an on/off state
for the Z-axis. In contrast to common XY-plotters, where the draw-
ing instrument is moved freely in X and Y direction, most hobby
plotters move the blade or the pen along the X axis only. The pro-
cessed medium is moved along the Y axis. The working area of
hobby plotters is typically limited to the size of approximately 30
cm × 300 cm, where 30 cm is a natural constraint by the ma-

chine dimensions and 300 cm is a common artificial constraint of
the plotter software. Some techniques, such as those used for Paul
the Robot [TFL13], utilize process feedback of the current draw-
ing state. Because the processed medium is constantly moved in a
hobby plotter, it is not easily possible to track this process with a
camera and to use this information in a feedback loop. Therefore,
all commands for the plotter must be precomputed.

Naturally, an XY-plotter processes its input as a collection of
paths. Many hobby plotters allow for two different processing tools,
a pen and a small freely rotating blade. While the path is unchanged
for the pen, the transitions between individual line segments are
rounded for the blade, as illustrated in Figure 4. This ensures that
the blade has enough space to rotate appropriately. Many methods
from computational aesthetics, such as hatching, employ varying
line thickness to emphasize darker regions. Such techniques are not
possible with a plotter, since a pen can only create a line with con-
stant width. Even sophisticated pens with line thickness varying
under pressure would not allow for varying lines, since the pres-
sure can not be changed during the drawing process. Furthermore,
a hobby plotter is not able to draw filled forms. Instead, a collection
of narrowly spaced lines has to be created in order to approximate
filled regions. As a hobby plotter can only use one pen, or in some
cases two, the plotter is not able to use a palette of colors, and only
monochrome images are possible. The software used by conven-
tional plotters is targeted at designs with limited complexity. While
this is not a fundamental restriction of the hardware, for practical
reasons our system can optimize the appearance of the drawings
with an upper limit on the complexity. In Table 1, we compare ex-
isting approaches against the plotter restrictions and our require-
ments. In addition to the restrictions in the table, the high price and
limited availability of the hardware of existing custom solutions are
the primary reasons for targeting conventional home-use plotters.

5. System Details

Having outlined the limitations of hobby plotters we can discuss
the functionality of our system within those limits. As noted be-
fore, our goal is a flexible system for the creation of a wide range
of monochrome line art and cutouts. In order to reproduce a wide
variety of artistic styles, our approach aims to represent the tonal
content of a digital image using a set of generalized primitives. The
basic strategy for approximating the tonal content of the source im-
age is then determined by a user-specified choice between a set of
encodings that control the subsequent global optimization process.

Many visual encodings exhibit a significant degree of overlap.
Grid halftone images, for example, are usually generated by plac-
ing differently-sized circles on a fixed grid. Often, only the grid will
vary for different styles while the encoding as circles stays fixed. To
avoid repetitive definition for the visual primitives and to further
reduce the encoding complexity, we split the definition of visual
primitives into two parts. Conceptually, our approach is a stroke-
based method, and we draw our inspiration from traditional line
art. Most drawing techniques consist of two main abstractions, the
position of a pen stroke and the drawn patterns. In fact, art students
often train their skills by restricting themselves to one specific ab-
straction. Following this concept, we distinguish between two basic

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

S. Stoppel and S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

Rel. work Visual feedback Complexity Line width Similarity opt. Scalability

E-David Optional No constraint as each stroke is
computed separately

Varying width possible Via visual feedback after a set
of strokes

Limited

Paul the Robot Required No constraint as the pen
movement is updated on the
fly

Constant line width No tonal optimization Limited

Conventional plotter
solutions

Optional No constraint due to succes-
sive feed

Constant line width Varies with solution Limited

Table 1: A brief comparison of existing algorithm requirements and plotter restrictions.

a b

Figure 5: Two examples of positional encoding: (a) Stippled image,
(b) triangulation of the stipple positions.

a b c

Figure 6: Three examples of shape encodings: (a) Halftone image,
(b) amplitude-modulated halftoning, (c) width-modulated halfton-
ing realized as a paper cutout. Note that the positions of the graph-
ical elements are fixed. The image is encoded through shape dif-
ference only. Note that these images are best to be inspected on a
computer screen.

types of encodings for visual primitives: positional encoding and
shape encoding.

Positional Encoding: Positional encoding denotes all techniques
that recreate the original image with geometric shapes with varying
positions, while the essential shape of the drawing primitive stays
fixed and is not dependent on the image intensity values. The den-
sity of the primitives conveys the gray values of the image. A stip-
pled image, as shown in Figure 5(a), is the most basic example of
positional encoding. However, positional encoding can have more
complex forms, as shown in Figure 5(b), where primitive positions
are triangulated to create a new style.

Pos

Shape

DashesStippling Circles

Spiral
Halftone

Grid
Halftone

Figure 7: Most drawing styles can be represented as a combination
of positional and shape encoding with varying degrees of freedom.
Designs with low degree of freedom in both encodings (gray area)
are not suitable for closely representing input images.

a b

Figure 8: Examples of a design combination: (a), the image is en-
coded through the position and the size of circles. (b), the image is
encoded through position, orientation, and length of straight lines.

Shape Encoding: By shape encoding we denote techniques that
use a direct mapping of the image intensity in a local neighborhood
to a geometric property, such as size or orientation, on a fixed po-
sition. Grid halftone images, as shown in Figure 6(a), are simple
examples of such direct encodings. However, shape encodings can
have various forms and the position of the encoded object does not
have to be aligned to a regular grid. In Figure 6(b), the input image
is encoded through an amplitude-modulated cosine function on an
Archimedean spiral. Another example for shape encodings are pa-
per cutout images, where the illustration is created by cutting out
segments of varying thickness from the paper, as shown in Figure
6(c). The image intensity values are directly encoded as thickness
of the cutout.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

S. Stoppel and S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

Design Combinations: Based on these two types of encodings,
we can proceed to generate new drawing styles by combining po-
sitional and shape encodings. This allows us to express a large
number of different artistic styles as combinations of positional and
shape encoding with varying degrees of freedom. As illustrated in
Figure 7, most monochrome line art can be represented as a combi-
nation of position and shape encoding with varying degrees of free-
dom for each encoding. For instance, the images in Figure 5 can be
seen as combinations with a high degree of freedom for the posi-
tional encoding and a low degree of freedom for the shape encod-
ing. In contrast, the images shown in Figure 6 have a high degree of
freedom in the shape encoding and a low degree of freedom in the
positional encoding. Likewise, it is possible to generate styles that
have a high degree of freedom in both positional and shape encod-
ing, and their exact weighting results in countless possibilities. For
example, combining positional encoding in the form of stippling
and shape encoding in the form of circles sizes yields a drawing
as in Figure 8(a). Even expressive paintings, such as the works of
Vincent van Gogh, can be seen as combinations of positional en-
codings and shape encodings, where the position, orientation and
the size of the brush stroke carry information about the color and
structure of the depicted object. Inspired by Van Gogh’s style, we
create monochrome drawings as depicted in Figure 8(b). In this ex-
ample, the spatial encoding of stipples was combined with a shape
encoding of lines, where the orientation of the line is dependent on
the local variance in the input image.

5.1. Drawing Simulation

As outlined before, we deconstruct the visual primitives into their
positional and shape encoding. In practice, the visual primitives are
computed in two stages. Our approach first generates a set of prim-
itive positions, which are subsequently assembled into shapes. As
a result each visual primitive consists of a backbone, defined by a
sampled centerline of the primitive, and the primitive shape. The
backbone of each primitive is stored as a point list with arbitrary
length. When multiple primitives are present, a collection of lists is
utilized. Because the shape module always expects point lists as in-
put, the system allows for the arbitrary combination of position and
shape encodings. We illustrate how two different shape encodings
use the same backbone in Figure 9 (a). Furthermore, point lists are
highly suitable for self intersection tests and concavity estimation.
In the remainder of this section, we discuss the generation strate-
gies for the positions and shapes, respectively.

Position Generation: For the generation of primitive positions,
our system offers two basic strategies: they can either be precom-
puted or iteratively generated. For precomputed positions, the user
can either choose from a set of predefined functions or define a new
function that covers the canvas with a set of points or curves defin-
ing the backbones of the primitives. A positional encoding module
can either output a set of positions directly, or generate curves that
are then automatically sampled by our system, following the re-
striction on maximum number of elements (if such as restriction
has been specified). The final point positions are used in the shape
generation either as center points of the primitives or in a user-
defined way. The positions are stored in a list or in a collection of
lists. For instance, a single list of points on a spiral as the center of

a

max
distance

b

Figure 9: (a) The primitive backbone always consists of a list of
points, but the actual shape of the primitive can be defined freely,
for example as a cut out or amplitude modulation. (b) The concavity
is measured by computing the distance from the primitive backbone
to its convex hull along a ray perpendicular to the backbone.

amplitude modulated line would create an image as shown in Fig-
ure 6(b), while as a collection of lists can be used for a cutout as
in Figure 16(b), where each list stores the points along the primi-
tive centerline. Our system evaluates each list with respect to inter-
section and aborts the computation if the backbones of the primi-
tives already intersect each other. This ensures paper stability for
cutouts and prevents overlapping elements during the drawing pro-
cess, which lead to dark spots in the drawing. In the case of paper
cutouts, our system additionally determines how concave the back-
bone of the visual primitive is. A highly concave primitive can lead
to unstable results that can not be hanged freely. To measure the
concavity, we compute the maximum distance between the primi-
tive’s backbone and its convex hull, as shown in Figure 9(b). If the
system detects elements that exceed the degree of concavity that
can be handled by the output device, they are discarded to prevent
the generation of mechanically unstable results.

Many artistic techniques are best modeled with an iterative com-
putation of primitive positions. This design is not only a natural
choice, but also allows us to effectively simulate the drawing pro-
cess on the computer and thus to optimize the drawing parameters.
To allow for efficient operation while providing a simple interface,
we utilize a simple strategy for modules that use iterative position
computation, as illustrated in Figure 10. Essentially, we create a
copy of the input image that functions as canvas. In this copy, the
system finds the position of the darkest pixel, computes a primitive
at that position, and adds the primitive in white color to the input
image copy. To account for the perceptual error, the image copy is
blurred with a Gaussian kernel. We discuss the kernel size com-
putation in Section 5.2. Each computed primitive is evaluated for
constraint violation, such as intersections for the paper cutouts. If
the primitive violates any constraints, it is discarded and not added
to the drawing simulation. However, the center position of the prim-
itive is still marked in the image copy, to ensure that this position is
not selected again. If the tonal value of the remaining darkest pixel
lies above a user-specified threshold (we use the value of 0.95 as a
default and for all the results presented in this paper) or the maxi-
mum number of primitives is reached, the drawing is considered to
be finished and the drawing loop ends.

Shape Generation: The shape of the primitives can either be en-
coded through a set of predefined functions or via a user-defined
function. Typical encodings consist of a shape variation around the

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

S. Stoppel and S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

Figure 10: An example of incremental position encoding. The sys-
tem creates a copy of the input image (top left). The copy is blurred,
a primitive is computed at the darkest pixel of the blurred image
(top middle). A bigger primitive with the same orientation is added
to the initial copy (top right). This process is iterated (lower row).

generated backbones, such as a variation of circle size or amplitude
variation, that directly encodes the image intensity, but it is equally
possible to use derivative information, e.g., to steer the direction
of strokes. In Figure 16(b), we show a typical shape encoding for a
cutout style. The cutout is represented by a polygon that is symmet-
ric along the backbone axis with the width encoding the gray val-
ues. In the case of cutouts, the system also computes the distance
between the visual primitives – based on a material simulation we
discard all results that have a distance below 1.4 mm between the
primitives, as those are likely to tear.

5.2. Optimization

The goal of our system is the generation of line art or cutouts from
any image input and we provide a flexible plugin-based architec-
ture that allows for the combination of different types of positional
and shape encodings. However, finding good parameters for these
encodings can be a challenging task that typically results in a trial-
and-error approach. While greedy algorithms for tonal reproduc-
tion can generally achieve good results for the generation of draw-
ings based on a given set of fine-tuned input parameters, their re-
sults are heavily affected by these inputs (e.g., thresholds or param-
eter ranges). This task becomes even harder when the artistic style
has to scale with the medium, as the parameters do not necessarily
scale linearly with the medium size. Often, artists create drawings
with an intended viewing distance, and following this idea we also
want to be able to globally indicate a desired distance instead of in-
dividually controlling the various parameters of the individual en-
codings. We therefore set up our approach as a meta-optimization
procedure, where the process of creating an individual drawing is
steered by a second optimization loop that seeks to optimize its pa-
rameters.

Typically, the visual primitives parameters affect one another,
hence the similarity between the input image and the simulation re-
sult tends to be highly non-convex over the parameter space. This
imposes a challenge for many gradient-based algorithms, as they
tend to get stuck in local minima. To overcome this challenge, we
use a greedy algorithm that iteratively samples the parameter space.

a b c

d e f

Figure 11: Intermediate results of the optimization process for the
dashes style. In this particular style the length of the dashes and
the thickness of control primitive, as shown in Figure 10, are op-
timized. Figure a shows the input image. Figures b, c, d, e and f
depict intermediate results of the optimization process.

In order reduce the number of simulations but still sample the space
uniformly, we use Latin Hypercube sampling in our system, and
simulate the drawing for each parameter setting. In each iteration,
the optimizer finds the parameter setting that generates a drawing
closest to the input image and then refines the sampling in a lo-
cal neighborhood reduced by the common factor of

√
2 around the

current best sample. Per default, we stop the refinement after N = 8
iterations or if

δn+1
δn

> 0.99, (1)

where δn is the minimal difference between the simulated image
and the input image in the n-th iteration. This means that we stop
the optimization either after the search space was reduced to ap-
proximately 6% of the initial parameter space or the optimization
improves by less than 1%. While these values can of course be ad-
justed, we found that they provide robust results and all the images
in this paper were generated with these settings. In Figure 11, we
show the intermediate results during an optimization process. One
can see that the initial guess in Figure 11(b) does not represent the
input image well. The second iteration in Figure 11(c), overcor-
rects the image and makes it too dark. In the following iterations in
Figure 11(d,e,f), the input image is depicted more faithfully.

We compute the differences between the simulated drawing and
the input image by rasterizing both and computing the normalized
mean square difference between them. We choose this rather simple
metric because is it less sensitive to the structural differences be-
tween the input image and the generated primitives. Furthermore,
our system does not create the typical failure cases for the mean
square error metric, such as transformed images or color shift. As
a drawing can only be an approximation of the input image, it is
infeasible to compute the differences directly. Instead, both images
are scaled to be of the same size and filtered with a Gaussian filter.
By adapting the kernel size of the Gaussian filter, we can optimize
the similarity of the drawing and the input image based on the de-
sired viewing distance. The visual acuity of a normally-sighted per-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

S. Stoppel and S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

a b c

Figure 12: Results of drawing simulations optimized for a sheet of
A3 format viewed from a distance of (a) 1 m, (b) 2 m, and (c) 4 m.

a b c

Figure 13: Close-up on an image depicting drawing of a fabric.
The drawing was optimized for a viewing distance of (a) 1 m, (b)
2 m, and (c) 4 m. One can see that the high frequency changes
disappear with the distance.

son is defined through a visual angle of 1 arc minute [CK15]. This
means that a person with normal sight would be able to identify an
isolated object of the size of approximately 1 mm from a distance
of 3 m. However, this is the smallest object an average human could
recognize with the naked eye. A study performed by Crété-Roffet
et al. [CRDLN07] indicates that humans hardly perceive blur gen-
erated with a Gaussian kernel with the size of 1 mm from a 1 m
distance. Using this information, we can optimize the similarity of
the drawings dependent on the distance by using an appropriate ker-
nel size. More precisely, we can directly compute the kernel size k
of a Gaussian filter to optimize the visual similarity from a fixed
distance with the following formula:

k = ceil
(

hI(px)
hP(mm)

·dP,V (m)

)
, (2)

where hI is the height of the scaled input image and simulated im-
age in pixels, hP is the height of the physical drawing in mm and
dP,V is the distance between the viewer and the physical drawing
in m. Using this formula, we compute the appropriate kernels for
drawings of size A4 and A3, for an image scaled to 1500 px height
during the computation, viewed from 1 m distance as 5 and 7, re-
spectively. In Figure 12, we compare the results of our simulation
for a drawing of size A3 optimized for the viewing distance of 1, 2,
and 4 m, respectively. In Figure 13, we show closeups of the lower-
right corner of these drawings. One can notice that high frequency
details become less and less preserved as the distance increases.

6. Implementation and Performance

Our system was implemented in Python 3.6 using CUDA, OpenCV
and DXFWrite. CUDA was used to parallelize the drawing simu-

Figure 14: We parallelize the primitive generation by subdividing
the image into a set of tiles, where the primitives are computed.

Style Figure Comp. time Prod. time

Stippling 5(a) 0.67 s 96 min
Triangulation 5(b) 0.72 s 84 min
Spiral 6(b) 0.01 s 47 min
Cutout 16(b) 0.09 s 56 min
Dashes 17 1.70 s 92 min
Circles 18(b) 4.76 s 87 min

Table 2: A brief comparison of existing algorithm requirements and
the plotter restrictions

lation, OpenCV is a library mainly aimed at real-time computer
vision that was used for efficient image operations, and DXFWrite
was used to export the drawing paths as dxf files that can be read by
conventional plotter software. We minimize the computation time
by computing the primitives in parallel on the GPU. For shape en-
codings where the positions of all primitives are fixed, we compute
the shape of all primitives in parallel. Hence, the computation time
for purely shape-encoded styles lies within a few milliseconds. To
reduce the synchronization overhead required for the paralleliza-
tion of iterative positional encodings, we subdivide the image into
overlapping tiles (Figure 14) which are then computed in parallel.
This process is performed in the following manner: First, we sub-
divide the image into tiles that have at least a pairwise distance of
twice the size of the largest primitive. This ensures that no prim-
itives are in conflict (Figure 14, left). Then the tiles are shifted as
shown in the subsequent images in Figure 14 and the computation
is repeated in each step.

The subdivision into tiles not only allows for parallel computa-
tion, but also results in an overall speedup as only a limited area
has to be evaluated. This simple strategy leads to a performance
increase by a factor of approximately 380 compared to the naive
approach. In our experiments, only the circle and the single line
style exceeded a computation time of 2 seconds, due to their se-
rial structure. On average, the remaining styles take around 0.5 to 1
seconds to generate an image. Table 2 lists the computation times
for the results presented in the paper. For completeness, we also
include the production times as measured on a Silhouette Studio
plotter.

Because the primitive positions are computed by evaluating the
image row by row, the primitives tend to accumulate at the right
and the lower border of the tiles. This can potentially introduce
undesired artifacts. To minimize these artifacts, the computation is
performed for a small range of gray values, i.e., we subdivide the
computation into n steps and in the k-th step compute the primitives
up to k

n image intensity. This leads to much more evenly distributed

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

S. Stoppel and S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

a b

Figure 15: A comparison of a drawing computed as whole (a) and
with tiles (b). Illustration (a) took 741 seconds to compute while (b)
took 1.43 seconds to compute. Qualitatively the results are almost
undistinguishable.

a b

Figure 16: (a) Cutout portrait by Yoo Hyun. (b) Cutout generated
with our system.

primitives as the primitives of the neighboring tiles cover parts of
the right and lower tiles borders in each iteration. In practice, we
found that n = 5 provides results with no visible artifacts. In Fig-
ure 15, we show a comparison between an illustration computed as
whole (a) and one computed with tile subdivision (b). The illustra-
tion in Figure 15(a) took 741 seconds to compute while the one in
(b) took 1.43 seconds. The resulting images are indistinguishable
to the naked eye.

7. Results

To generate a drawing, the user has to select a module for the
positional and shape encoding. Conceptually, these modules are
realized as functions in a catalogue, to which the users can add
their own functions as well. To define a style, the user needs to
select at least one positional and one shape encoding. Currently
the LinesLab system provides 11 different positional encodings,
such as fixed patterns or iterative encodings for the stippling
and dashed styles, and 17 shape encodings, such amplitude
modulation or triangulation of points. If desired, the user can add
further encodings by adding the function calls for positional and
shape encodings. We provide pseudocode of the used modules to
illustrate their functionality for the following examples. When two
modules are selected, our system loads two stored lists with the
upper and lower bounds of the used parameters. Therefore, if users
create a new module, they also need to define a possible range for
the used parameters. However, the parameter ranges can also be
overridden prior to the optimization process. This information is
then sent to the optimizer function, which samples the parameters
and calls the drawing simulation function for each parameter setup.
The drawing simulation function calls the positional encoding
and shape encoding functions. After each primitive computation,

Cutout positional encoding
input : number of divisions: nx, number of cut lines per

division: ny, angle of the cutout: α

for cx in range (0, nx) do
for cy in range (0, ny) do

compute the start and endpoints pS, pE for
alternating primitive backbones

end
primitives.add([pS, pE])

end
return primitives

Algorithm 1: Positional encoding for the cutout style.

LinesLab evaluates the result for constraint violation. To generate
the upcoming result, the setup of our system requires the following
Python code:

img = cv2.imread(’input.jpg’)
drawing = dxf.drawing(’output.dxf’)

min_dimension = 1200.0 # set canvas size

set tonal coverage threshold
for iterative generation
max_darkness_threshold = 0.95
define tile_size for parallelization
tile_size = 200

define limit of primitives, set to inf if not given
num_prim = 10000

#test for intersection concavity
intersec = True
concavity = False

Add positional and shape encodings.
pos_enc = ["hering_bone"]
shape_enc = ["cut_out"]

Define upper and lower bounds of the
optimized parameters.
When left empty a preset is loaded.
UB = []
LB = []

LinesLab_opt(pos_enc,shape_enc,UB,LB,intersec,concavity)

Paper Cutouts: The Korean artist Yoo Hyun [Yoo] creates breath-
taking portraits of celebrities by carefully slicing away thin slivers
of paper. In this way, he forms a woven zigzag pattern contained
inside a solid frame as shown in Figure 16(a). With our system, we
are able to recreate the same style by choosing a similar positional
encoding as Hyun, a regular tiled grid, and a shape encoding that
translates the darkness values into line thickness. The pseudocode
of the encodings is shown in Algorithms 1 and 2.

The positional encoding essentially creates a herringbone pat-
tern. LinesLab automatically optimizes the encoding parameters to
create a result with the highest tonal similarity to the input image

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

S. Stoppel and S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

Cutout shape encoding
input : thickness of the cutout: th, sampling distance: d,

primitive backbone containing pS and pE: p
compute primitive length pL
ns = pL/d
for s in range (0, ns) do

pos = pE * s/ns + pS * (ns-s)/ns
br = (1-img(pos))
primitiveThickness = br * th

end

Algorithm 2: Shape encoding for the cutout style.

Dashes positional encoding
input : input image with all existing primitives marked

white: img
p = minLoc(img)
mark primitive in img
return p

Algorithm 3: Pseudocode of positional encoding for the dashes
style.

while ensuring paper stability by restricting the distance between
the cutouts to at least 1.4 mm. The result of our cutout is shown
in Figure 16(b). In contrast to Yoo Hyun, our system leaves small
strips of paper between the segments to ensure the stability of the
paper while cutting. Hyun spends tens of hours creating such por-
traits. Using our system, we are able to create the cutout in just over
45 minutes (including the production time).

Dashes Style: Inspired by Van Gogh, we created an image com-
posed of short dashes in the direction of lowest variance. In this
style, the positional encoding is performed iteratively as described
in Section 5.1 and can be formulated as shown in Algorithm 3.
The shape encoding is done by sampling a line at each generated
position and choosing the direction of the sample with the low-
est variance along the line. We describe the shape computation
with the pseudocode shown in Algorithm 4. For this style, only
the maximum length of the primitives was declared as an optimiza-
tion parameter and is determined in the outer optimization loop.
For instance, for an image of size A4 drawn with a pen of 0.5 mm
thickness and a viewing distance of 1 m, the resulting value of the
maximal line length is 4 mm. Three results generated in this style
are shown in Figure 17. The respective photographs were taken at
the optimized distance for each image. The leftmost drawing has a
size of 3.5×5 cm and is optimized for a viewing distance of 20 cm,
the middle image is 21×29.7 cm big and is optimized for a viewing
distance of 120 cm, and the rightmost image measures 29.7×42 cm
and is optimized for a viewing distance of 170 cm.

Circle Style: Many artists use familiar shapes to create complex
portraits. Màrton Jancsò, for example, created a portrait composed
of only circles, shown in Figure 18(a). Our system is able to recre-
ate this style with the above mentioned iteratively-computed po-
sitional encoding in Algorithm 3 with circles as primitives. The
marked circles are computed using the image brightness and a min-
imum and maximum radius as input parameters. Our system stores

Dashes shape encoding
input : input image: img, primitive pos: p, maximal

primitve length: mL, number of radial samples: ns
lowVar = +inf
for s in range (0, ns) do

a = s * pi/ns
pS = [p.x + mL/2 * sin(a),p.y + mL/2 * cos(a)]
pE = [p.x - mL/2 * sin(a),p.y - mL/2 * cos(a)]
var = measure variance in img from pS to pE
if var <lowVar then

lowVar = var
aa = a

end
end
pL = (1-img[p]) * mL
pS = [p.x + pL/2 * sin(aa),p.y + pL/2 * cos(aa)]
pE = [p.x - pL/2 * sin(aa),p.y - pL/2 * cos(aa)]
return (pS,pE)

Algorithm 4: Shape encoding for the dashes style. For each
primitive the system find the direction of the lowest variance
around that point and draws a line in that direction encoding
the image brightness with the line length.

a b c

d e f

Figure 17: Examples of a drawing on different medium sizes and
viewing distances. The first row shows the medium size and viewing
distance in proportion to an 1.8m high man, while the lower row
depicts photographs of the corresponding drawings. The drawing
in Figure d is 35×50 mm big, while the drawings in Figures e and
f have the size 210×297 mm and 297×420 mm respectively.

the center points of the circles as the primitive backbones. Next, to
draw the circles in a space filling manner, the backbones are send
to a build in function that computes a Voronoi diagram of the prim-
itive positions and finds the largest fitting circle for each cell. A
drawing made by our system is depicted in Figure 18(b). As can be
seen, our approach tends to leave blank spaces between the circles
in very bright areas and at areas close to the border. This is due to
the elongated shape of the Voronoi cells that occurs more often at
the image border.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

S. Stoppel and S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

a b

Figure 18: (a) Circles drawing by Màrton Jancsò, (b) drawing gen-
erated by our system.

Crosshatching Style: Creating drawings with crosshatching tech-
niques originated in the middle ages and was perfected by Albrecht
Dürer. It is still a popular technique for artists in modern days.
The main concept of crosshatching is that the quantity, thickness,
and spacing of lines depicts the brightness of the image. As men-
tioned in Section 4, we cannot change the line thickness during the
drawing process. Therefore, to recreate a convincing crosshatching
style, only the line quantity and spacing can be adjusted in Lines-
Lab. A crosshatching drawing made using our system can be seen
in Figure 19(a). This illustration was created with two function calls
for the positional encoding and two function calls for the shape
encoding. The shape encoding function consisted of straight lines
connecting the backbones. The first positional encoding function
computes the prominent contours in the image with a Canny edge
detection algorithm, which is part of our function library. In the
second positional encoding, the image is quantized to five intensity
levels. For each of the levels, the algorithm then fills in the cor-
responding areas with crosshatching lines. To create a natural ap-
pearance, we add noise to the start- and endpoints of each line. The
system then optimizes the length of the lines, the distance between
the lines for each tone, and the noise level. The pseudocode for the
positional encoding is shown in Algorithm 5. Our system can be di-
rectly applied to other media as well. In Figure 19(b) we show the
same illustration engraved with a laser cutter on a medium-density
fiberboard.

Single Line Style: Artwork created with a single line ranges from
abstract minimalist drawings to highly detailed portraits. We can re-
alize a single line style in our system by using the same positional
encoding as for the stippling style (Algorithm 3). Then, in the shape
encoding, we choose a random point and declare this point as the
line ending. We compute the five nearest points to the endpoint and
randomly choose one as the next point. This process is repeated
until all points have been processed and the line can be drawn. We
show a result of this style in Figure 20. The only optimized parame-
ter for this style is the size of the marker in the positional encoding.
We increase the performance of finding the closest primitives by
considering only primitives in the adjacent cells. Due to the itera-
tive structure this style is rather slow to compute and one simulation
for a drawing on a A3 canvas can take several minutes. Therefore,
the optimization process for this style was performed overnight.

Crosshatching positional encoding
input : input image: img, line angle: a, distance between

lines: d, maximal line length: l
postImages = posterize(img,5) // returns 5 binary images

encoding the posterized are as 1 and background as 0
canStartLine = True
canEndLine = False
for pImg in postImages: do

for x in range (0,img.w) do
for y in range (0,img.h) do

if canStartLine and pImg(x,y) == 1 then
begin line
canStartLine = False
canEndLine = True

end
if canEndLine and (pImg(x,y) == 0 or

lineLenght > l) then
end line
draw line
canStartLine = True
canEndLine = False

end
end

end
end

Algorithm 5: Positional Encoding for the crosshatching style

a b

Figure 19: Crosshatching drawing made with the LinesLab system.
(a) The illustration is drawn on paper (b) The same illustration
etched on MDF with a laser cutter.

However, once the optimization process is performed the parameter
settings can be stored and retrieved again for a different drawing.

Mosaic Style: A popular task for art students is to create portraits
on a regular grid. The portrait by Katherine Cahoon in Figure 21(a)
is an example of this style. With our method, we are able to create
such a grid portrait by simply subdividing the input image into reg-
ular tiles and processing the tiles individually with a random style.
The result of this approach can be seen in Figure 21.

8. User Feedback

To gain feedback on the usability and utility of our approach, we
presented LinesLab to two computational artists with different lev-
els of programming experience. Both artists use Processing to cre-
ate their artworks, but the first artist has used Processing for several
years, while the second user has only experimented with it for three
months. We explained LinesLab to them and let them freely explore

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

S. Stoppel and S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

Figure 20: Single line drawing, created by connecting the positions
of a stippled image with a single line.

a b

Figure 21: (a) Grid portrait by Katherine Cahoon (b) Grid Portrait
generated with our system.

the system with the possibility to ask questions at any point. After
the exploration phase, we asked both artists to add a new style to
the system. Finally, we asked them to comment on LinesLab and
its usability.

Experience with programming languages was benefitial for the
first artist in terms of required learning time and in implementing
new encodings. The first artist spent 34 minutes in the exploration
phase, while the second artist needed 78 minutes to fully under-
stand the entire functionality of the system. During the exploration
phase, both artists simulated different styles by exchanging the po-
sitional and shape encodings, while investigating the code of the
used encodings. Both artists were able to create a new style in our
system. However, the first artist was able to implement a new style
within just under 20 minutes, while the artist with less program-
ming experience needed 37 minutes. We show the results of the
two styles in Figure 22. In Figure 22(a), the artist added a new po-
sitional encoding in form of lines aligned in a hexagonal pattern,
which were superimposed with the existing amplitude modulation
function. LinesLab automatically optimizes the spacing inside the
hexagon as well as the sampling rate and the amplitude of the mod-
ulation function. In Figure 22(b), the artist used an existing posi-
tional encoding (regular grid), and then created a star pattern for
each primitive. For this style, our system optimizes the spacing be-
tween the primitives and the length of the drawn line in the star
pattern.

a b

Figure 22: (a) A new hexagonal style created by an artist with long
strong programming skills (b) A halftone style create by an artist
with limited programming experience.

After the hands-on phase, we asked the two artists to comment
on the usability of our system, features they liked and disliked, and
if they would consider using our system in the future. With respect
to usability, both artist said that the functionality of the system can
be understood fairly easily through experimentation with the differ-
ent encoding functions. When asked to comment on features they
liked, the first artist replied: "I especially like the separation be-
tween shape and positional encodings. This really makes it easy for
me to experiment with different style combinations. Furthermore, it
forces me to mentally decompose my ideas for a style, which makes
it easier to translate them into code later on." The second artist
noted: "The automatic parameter tuning is really helpful. I would
still change the parameters a bit to get the result I had in mind, but
the automatic tuning drastically reduces the testing time." When
asked about any annoyances or features of dislike the second artist
replied: "It confused me that some styles were computed almost
instantly while some took a bit longer. Maybe having a progress
bar would be good.". Both artists mentioned that a drag and drop
interface for the encodings would make the exploration of the sys-
tem easier. Nonetheless, both artists said they would appreciate to
use our tool in the future. The first artist said: "I would absolutely
use this tool, but mostly to create a basis on which I can work in
other programs such as Illustrator or Inkscape.". The second artist
replied: "Yes, I would use this tool. I think it would save me a lot
of time. For me it is much faster to create good results in this tool
than in Processing, because I can easily reuse old styles and I get
to see good results without tuning all the parameters."

9. Discussion

The creation of physical drawings or cutouts can have unexpected
and unwanted artifacts that we normally do not encounter when
only dealing with digital images. For instance, the pen may not dis-
tribute the ink evenly resulting in too light or too dark areas. Sim-
ilarly, a blade can wear off and tear the paper instead of producing
a clean cut. In our experience, such issues can be minimized by
reducing the speed of the plotter, allowing for a more even distribu-
tion of ink and lower the forces on the paper. Another way to avoid

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

S. Stoppel and S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

excessive ink leakage of a pen is to use strongly absorbing paper,
such as Aquarelle paper.

To ensure paper stability, we simulated the stress of a paper sheet
during the cutting process and the deformation of the paper after
the cutting and incorporated the results as global parameters of our
system. The simulation was performed in ANSYS, where the paper
was approximated as a thin sheet of custom material based on wood
with its tensile strength and density changed to the values of paper.
The result of the simulation was that the stress during cutting is neg-
ligible, if the cutting paths have at least 1.4 mm distance between
them. Furthermore, we simulated the deformation of hanging paper
cutouts fixed on the upper corners. The simulation showed that the
deformation is minimized when the cutting pattern follows vertical
lines or lies within an angle of 14 and 46 degrees. While such a
simulation can only provide guidelines for the cutting process, we
still see such results as valuable for the design of our system and
hope to incorporate further results in the future. In fact, we could
confirm that the paper often tore when the distance between cutting
paths fell below 1.4 mm.

At present, we use a rather simple optimization process of re-
fining around the best result of the current iteration. While this ap-
proach has proven to be effective, more complex optimizers could
be easily integrated, as our system is completely modular in this
respect. While we deliberately targeted off-the-shelf hobbyist plot-
ting and cutting devices in the development of our system, there
are no fundamental restrictions that would prevent its use for pro-
fessional devices. In fact, we tested our system on industrial laser
cutters, as can be seen in Figure 19. In the future, we plan to experi-
ment with professional vinyl cutters that can be used for large scale
drawings with only moderate expenses. The current implementa-
tion of LineLab provides a function-based interface. We plan to en-
hance the usability by providing a simple drag and drop functional-
ity to further simplify experimentation. Currently if a user aims to
add a new style to the system he needs to define the corresponding
positional and shape encoding functions. Inspired by the advances
of deep neural networks we see a promising direction for future
work in automatic style extraction from exemplar images.

Despite its modularity and the simplicity of our optimization
process, our system is still able to closely recreate the results of
specialized approaches. For instance, we were able to create sim-
ilar results to Chiu et al. [CLLC15], by computing the positions
as stippling points first and constructing a backbone path through
them with a TSP solver. The shape encoding was done through a
trochoid function, which is a curve defined by a fixed point on a ro-
tating circle traveling along a line. The optimized parameters were
the mapping parameters that computed the rotation speed and circle
radius from the local image intensity. The comparison of our result
and the result by Chiu et al. can be seen in Figure 23. Clearly, our
formulation can not exactly reproduce the tonal quality of a highly
specialized approach. However, this example shows the strength
of our system in being able to produce high quality results with a
much simpler setup.

10. Conclusion

We presented a novel system capable of creating line art and cutouts
with conventional hobby plotters and cutting machines. Our ap-

a b c

Figure 23: (a) Scribble art generated by a method proposed by
Chiu et al., (b) Input image, (c) Scribble art generated with our
system.

proach is flexible and modular, supporting a wide range of artistic
styles generated from a basic set of position and shape encodings.
By employing a nested optimization process, we are able to auto-
matically generate artistic results that conform to the physical and
mechanical constraints of the output devices. To the best of our
knowledge, our system is the first one that optimizes the generated
drawings based on the distance of the viewer to the artwork itself,
while maintaining scalability with respect to the medium size. We
achieve results comparable to existing works of art that can be eas-
ily reproduced with off-the-shelf hardware. Furthermore, our archi-
tecture features a simple plugin mechanism, which allows the easy
addition of new styles.

References

[AD16] AHMED A. G. M., DEUSSEN O.: Amplitude modulated line-
based halftoning. In Computer Graphics and Visual Computing (2016),
pp. 41–43. 3

[Ahm14] AHMED A. G. M.: Modular line-based halftoning via recur-
sive division. In Proc. Workshop on Non-Photorealistic Animation and
Rendering (2014), pp. 41–48. 3

[Ahm15] AHMED A. G. M.: From stippling to scribbling. In
Proc. Bridges: Mathematics, Music, Art, Architecture, Culture (2015),
pp. 267–274. 3

[BSMG05] BARTESAGHI A., SAPIRO G., MALZBENDER T., GELB D.:
Three-dimensional shape rendering from multiple images. Graphical
Models 67, 4 (2005), 332 – 346. 3

[CAO09] CHANG J., ALAIN B., OSTROMOUKHOV V.: Structure-aware
error diffusion. In SIGGRAPH Asia (2009), pp. 162:1–162:8. 3

[Car] Caravaggio. http://caravaggio-a-drawing-machine.
webnode.it/. Accessed: 2017-07-27. 2

[CEB05] CALINON S., EPINEY J., BILLARD A.: A humanoid robot
drawing human portraits. In Proc. International Conference on Hu-
manoid Robots (2005), pp. 161–166. 2

[CK15] CARLSON N. B., KURTZ D.: Clinical Procedures for Ocular
Examination. McGraw-Hill Education, 2015. 8

[CLLC15] CHIU C.-C., LO Y.-H., LEE R.-R., CHU H.-K.: Tone-and
feature-aware circular scribble art. In Proc. Pacific Graphics (2015),
vol. 34, pp. 225–234. 3, 13

[CRDLN07] CRÉTÉ-ROFFET F., DOLMIERE T., LADRET P., NICO-
LAS M.: The Blur Effect: Perception and Estimation with a New No-
Reference Perceptual Blur Metric. In Proc. Electronic Imaging Sympo-
sium (2007), pp. 6492–6503. 8

[Cri] Cricut. https://home.cricut.com/. Accessed: 2017-05-
22. 2

[CVP08] COLTON S., VALSTAR M. F., PANTIC M.: Emotionally aware
automated portrait painting. In Proc.of Digital Interactive Media in En-
tertainment and Arts (2008), pp. 304–311. 2

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

http://caravaggio-a-drawing-machine.webnode.it/
http://caravaggio-a-drawing-machine.webnode.it/
https://home.cricut.com/
mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

mmeher
Highlight

S. Stoppel and S. Bruckner / LinesLab: A Flexible Low-Cost Approach for the Generation of Physical Monochrome Art

[DLPT12] DEUSSEN O., LINDEMEIER T., PIRK S., TAUTZENBERGER
M.: Feedback-guided stroke placement for a painting machine. In Proc.
Symposium on Computational Aesthetics in Graphics, Visualization, and
Imaging (2012), pp. 25–33. 2

[DOM∗01] DURAND F., OSTROMOUKHOV V., MILLER M., DURAN-
LEAU F., DORSEY J.: Decoupling strokes and high-level attributes for
interactive traditional drawing. In Proceedings of the 12th Eurographics
Conference on Rendering (2001), pp. 71–82. 2

[Fri] Frieder Nake. https://en.wikipedia.org/wiki/
Frieder_Nake. Accessed: 2017-07-22. 1, 2

[Geo] Georg Nees. https://en.wikipedia.org/wiki/
Georg_Nees. Accessed: 2017-07-22. 1, 2

[GKAK16] GALEA B., KIA E., AIRD N., KRY P. G.: Stippling with
aerial robots. In Proceedings of the Joint Symposium on Computa-
tional Aesthetics and Sketch Based Interfaces and Modeling and Non-
Photorealistic Animation and Rendering (2016), pp. 125–134. 2

[Har] Harold Cohen Aaron. http://www.aaronshome.com/
aaron/aaron/index.html. Accessed: 2017-07-22. 2

[HHD03] HILLER S., HELLWIG H., DEUSSEN O.: Beyond Stippling
- Methods for Distributing Objects on the Plane. Computer Graphics
Forum (2003), 515–522. 3

[Jea] Jean Tinguely. https://en.wikipedia.org/wiki/
Jean_Tinguely. Accessed: 2017-07-22. 2

[Jes16] JESCHKE S.: Generalized diffusion curves: An improved vector
representation for smooth-shaded images. Comput. Graph. Forum 35, 2
(2016), 71–79. 2

[JGKS15] JAIN S., GUPTA P., KUMAR V., SHARMA K.: A force-
controlled portrait drawing robot. In Proc. Industrial Technology (2015),
pp. 3160–3165. 2

[JJC∗16] JUN Y., JANG G., CHO B., TRUBATCH J., KIM I., SEO S.,
OH P. Y.: A humanoid doing an artistic work - graffiti on the wall. In
Proc. Intelligent Robots and Systems (2016), pp. 1538–1543. 2

[KB05] KAPLAN C. S., BOSCH R.: Tsp art. In Renaissance Banff: Math-
ematics, Music, Art, Culture (2005), pp. 301–308. 3

[KCWI13] KYPRIANIDIS J. E., COLLOMOSSE J., WANG T., ISENBERG
T.: State of the art: A taxonomy of artistic stylization techniques for
images and video. IEEE Transactions on Visualization and Computer
Graphics 19, 5 (2013), 866–885. 3

[LPD13] LINDEMEIER T., PIRK S., DEUSSEN O.: Image stylization
with a painting machine using semantic hints. Comput. Graph. 37, 5
(2013), 293–301. 1, 2

[MARI17] MARTÍN D., ARROYO G., RODRÍGUEZ A., ISENBERG T.: A
survey of digital stippling. Computers & Graphics 67 (2017), 24 – 44. 3

[MIA∗08] MACIEJEWSKI R., ISENBERG T., ANDREWS W., EBERT D.,
SOUSA M., CHEN W.: Measuring stipple aesthetics in hand-drawn and
computer-generated images. IEEE Computer Graphics and Applications
28, 2 (2008), 62–74. 3

[OH99] OSTROMOUKHOV V., HERSCH R. D.: Multi-color and artistic
dithering. In ACM SIGGRAPH (1999), pp. 425–432. 2

[PB96] PNUELI Y., BRUCKSTEIN A. M.: Gridless halftoning: A reincar-
nation of the old method. Graphical Models and Image Processing 58,
1 (1996), 38 – 64. 3

[Pin] Pindar Van Arman. http://www.cloudpainter.com/. Ac-
cessed: 2017-07-22. 2

[PJJSH16] PRÉVOST R., JACOBSON A., JAROSZ W., SORKINE-
HORNUNG O.: Large-scale painting of photographs by interactive op-
timization. Computers & Graphics 55, 0097-8493 (2016), 108 – 117.
2

[PQW∗08] PANG W.-M., QU Y., WONG T.-T., COHEN-OR D., HENG
P.-A.: Structure-aware halftoning. ACM Trans. Graph. 27, 3 (2008),
1–8. 3

[Pro] Processing. https://processing.org/. Accessed: 2018-
02-20. 3

[PS06] PEDERSEN H., SINGH K.: Organic labyrinths and mazes. In
Proc. International Symposium on Non-photorealistic Animation and
Rendering (2006), pp. 79–86. 3

[Rem] The next Rembrandt, can the great master be brought back to cre-
ate one more painting? https://www.nextrembrandt.com/.
Accessed: 2017-05-22. 1

[SBC06] SHUGRINA M., BETKE M., COLLOMOSSE J.: Empathic paint-
ing: Interactive stylization through observed emotional state. In Proc.
Symposium on Non-photorealistic Animation and Rendering (2006),
pp. 87–96. 2

[SHL∗17] SPICKER M., HAHN F., LINDEMEIER T., SAUPE D.,
DEUSSEN O.: Quantifying visual abstraction for stipple drawings. In
Proc. NPAR (2017), pp. 1–10. 3

[Sil] Silhouette America. https://www.silhouetteamerica.
com/. Accessed: 2017-05-22. 2

[SLKL11] SON M., LEE Y., KANG H., LEE S.: Structure grid for direc-
tional stippling. Graphical Models 73, 3 (2011), 74 – 87. 3

[TFL13] TRESSET P., FOL LEYMARIE F.: Portrait drawing by paul the
robot. Comput. Graph. 37, 5 (2013), 348–363. 2, 4

[WLL∗06] WEN F., LUAN Q., LIANG L., XU Y.-Q., SHUM H.-Y.:
Color sketch generation. In Proc. of Symposium on Non-photorealistic
Animation and Rendering (2006), pp. 47–54. 2

[XK07] XU J., KAPLAN C. S.: Image-guided maze construction. In
ACM SIGGRAPH (2007). 3

[XKM07] XU J., KAPLAN C. S., MI X.: Computer-generated paper-
cutting. In Proceedings of the 15th Pacific Conference on Computer
Graphics and Applications (2007), pp. 343–350. 3

[Yoo] Yoo Hyun. https://www.instagram.com/yoo.hyun/.
Accessed: 2017-08-22. 9

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

https://en.wikipedia.org/wiki/Frieder_Nake
https://en.wikipedia.org/wiki/Frieder_Nake
https://en.wikipedia.org/wiki/Georg_Nees
https://en.wikipedia.org/wiki/Georg_Nees
http://www.aaronshome.com/aaron/aaron/index.html
http://www.aaronshome.com/aaron/aaron/index.html
https://en.wikipedia.org/wiki/Jean_Tinguely
https://en.wikipedia.org/wiki/Jean_Tinguely
http://www.cloudpainter.com/
https://processing.org/
https://www.nextrembrandt.com/
https://www.silhouetteamerica.com/
https://www.silhouetteamerica.com/
https://www.instagram.com/yoo.hyun/

